Prop 4. Let S be a regular surface. Suppose
\[\tilde{x} : U \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad p \in \tilde{x}(U) \subset S, \]
is smooth, 1-1, and $d\tilde{x}_q$ is 1-1 for each $q \in U$. Then
\[\tilde{x}^{-1} : \tilde{x}(U) \to U \]
is continuous, and hence \tilde{x} is a parametrization of $\tilde{x}(U)$.

Note: 1-$1 \Rightarrow$ existence of \tilde{x}^{-1}, not continuity.

Proof. Let $q \in U$. We may assume $\det \frac{\partial (x,y)}{\partial (u,v)}(q) \neq 0$.

Let $\pi(x,y,z) = (x,y)$. Same argument in the proof of Prop 3

$\Rightarrow \exists$ nbhd V_1 of q, nbhd V_2 of $\pi \tilde{x}(q)$, s.t.

$\pi \circ \tilde{x} : V_1 \to V_2$

has a smooth inverse map ϕ. Then the restriction
\[\tilde{x}^{-1} : \tilde{x}(V_1) \to V_1 \]
\[\tilde{x}^{-1} = \phi \circ \pi, \]
composition of continuous functions. Hence \tilde{x}^{-1} is continuous.
Ex 5 upper cone

\[S : z = \sqrt{x^2 + y^2}, \quad (x, y) \in \mathbb{R}^2 \]

is not a regular surface.

To show this, it is not sufficient to note that \(f(x, y) = \sqrt{x^2 + y^2} \) is not smooth at \((0, 0)\). By definition, we need to show that there is no map \(\tilde{x} : U \subseteq \mathbb{R}^2 \rightarrow S \) at \(p = (0, 0, 0) \in x(U) \), such that \(\tilde{x} \) is smooth, 1-1 from \(U \rightarrow \text{nbhd of } p \) and \(d\tilde{x}_p \) is 1-1 \(\forall q \in U \).

Instead of using definition, we use Prop 3. Then \(S \) near \(p \) is locally a graph of the form

\begin{align*}
(1) & \quad z = \tilde{f}(x, y) \\
(2) & \quad y = g(x, z), \quad \text{or} \\
(3) & \quad x = h(y, z).
\end{align*}

(2) & (3) are impossible: for all \(x, z \), there are 2 \(y \)'s

\[\forall y, z, \quad \exists 2 x \]s

(1) : then \(f(x, y) = \tilde{f}(x, y) \) only choice,

but then not smooth.
Ex 6. The surface

\[S = \{ (u, u^2, uv) : u > 0, \forall v \in \mathbb{R}^2 \} \]

is shown in Ex 4 to be a regular surface.

If \((x, y, z) \in S\), then \(x > 0, z > 0\), and

\[xz = y^2 \]

Is the map \(F : U \to \mathbb{R}^3 \)

\[F(x, z) = (x, \sqrt{xz}, z) \]

\[U = \{ (x, z) \in \mathbb{R}^2 : x > 0, z > 0 \} \]

a parametrization of \(S_+ = F(U) \subset S \)?

Check:

(i) Smooth \(\text{ok} \)

(ii) 1-1 = \(F(x, z) = F(x', z') \) then \((x, z) = (x', z') \) \(\text{ok} \)

(iii) \(dF = \begin{pmatrix} x & 0 \\ \frac{xz}{2x} & \frac{1}{2x} \\ -z & 1 \end{pmatrix} \) \(1-1 \)

Thus \(F \) is a parametrization of \(S_+ \).

No need to check \(F^{-1} \) continuous, although easy.

How about \(G : U \to \mathbb{R}^3 \)

\[G(s, t) = (st, s^2t, t^3) \]?
\[
\begin{cases}
 u^3 = s^4 t \\
 u^2 v = s^3 t^2 \\
 u v^2 = t^3 \\
 u = s^{\frac{3}{2}} t^{\frac{1}{2}}, \\
 v = \frac{u^2}{s^2 t^2} = s^{-\frac{3}{2}} t^{\frac{1}{2}}
\end{cases}
\]

Hence \(G(U) = S^+ \)

Smooth ok

1-1 ok

\[
dG = \begin{pmatrix}
4 s^3 t & s^2 \\
2 s^2 t^2 & 2 s t \\
0 & 3 t^2
\end{pmatrix}, \quad 1-1
\]

\(G^1 \) is continuous by Prop 4.
§ 2.3 Smooth functions on surfaces

Goal: To define smooth functions on surfaces, and smooth maps between surfaces, independently of choice of coordinates.

Prop 1 Let p be a pt of a regular surface S, and let

$$\bar{x}: U \subset \mathbb{R}^2 \to S, \quad \bar{y}: V \subset \mathbb{R}^2 \to S$$

be two parametrizations of S such that $p \in W = \bar{x}(U) \cap \bar{y}(V)$. Then the map

$$h = (\bar{x})^{-1} \circ \bar{y}: \bar{y}^{-1}(W) \subset V \to \bar{x}^{-1}(W) \subset U$$

is a diffeomorphism, i.e., both h and h^{-1} are smooth.

Rk 1. Being compositions of homeomorphisms, h is also a homeomorphism. (Using Property 2 of Defn of regular surfaces in a vital way.)

2. But "$(\bar{x})^{-1} \in C^\infty(W)$" has no meaning yet.

3. It suffices to show $h \in C^\infty$

$h^{-1} \in C^\infty$ follows by switching \bar{x}, \bar{y}.
Idea: Extend \(\overline{X} \) to a map \(\overline{F} \) between 3D regions s.t. \(\overline{F}^{-1} \) is smooth

\[
\begin{align*}
\overline{X} : & \ (u,v) \in U \rightarrow (x,y,z) \in \mathbb{R}^3 \\
\overline{X}_u \& \overline{X}_v & \text{ are } 1, \text{ indep.} \\
& \begin{bmatrix}
\overline{X}_u \\
\overline{X}_v \\
\end{bmatrix}
\text{ has rank } 2,
\end{align*}
\]

one of its 2×2 submatrices has nonzero determinant.

Suppose \(\begin{vmatrix}
\overline{X}_u & \overline{X}_v \\
\overline{Y}_u & \overline{Y}_v \\
\end{vmatrix} \neq 0 \)

\[
\Pi \circ \overline{X} : \ (u,v) \rightarrow (x,y,z) \rightarrow (x,y)
\]

Extend \(\overline{X} \) to \(\overline{F} : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^2 \)

\[
\overline{F}(u,v,t) = (x,y,z+t) = \overline{X}(u,v) + (0,0,t)
\]

\[
\begin{vmatrix}
\overline{X}_u & \overline{X}_v & 0 \\
\overline{Y}_u & \overline{Y}_v & 0 \\
\overline{Z}_u & \overline{Z}_v & 1 \end{vmatrix} = \begin{vmatrix}
\overline{X}_u & \overline{X}_v \\
\overline{Y}_u & \overline{Y}_v \\
\overline{Z}_u & \overline{Z}_v \\
\end{vmatrix} \neq 0
\]

By IFT, \(\exists \) nbhd \(V_1 \) of \((q,0)\), nbhd \(M \) of \(p \in \mathbb{R}^2 \),

such that \(\overline{F} : V_1 \rightarrow M \)

has a smooth inverse.

Choose nbhd \(N \subset V \) of \(r \) s.t. \(\overline{y}(N) \subset M \).

Then \(h|N = \overline{F}^{-1} \overline{y}^{-1} |N \)

Composition of smooth fns. Hence \(h|N \) is smooth,

Since \(q \in \overline{X}^{-1}(W) \) is arbitrary, \(h : \overline{y}^{-1}(W) \rightarrow \overline{X}^{-1}(W) \) is smooth. \(\Box \)
Definition: Let \(V \) be an open subset of a regular surface \(S \).

A function \(f: V \to \mathbb{R} \) is differentiable at \(p \in V \) if for some parametrization \(\tilde{x}: U \subset \mathbb{R}^2 \to S \) with \(p \in \tilde{x}(U) \setminus V \), the composition \(f \circ \tilde{x}: U \to \mathbb{R} \) is smooth. It is differentiable in \(V \) if it is differentiable at all \(p \) of \(V \).

Remark: This definition is independent of choice of \(\tilde{x}: W \to S \).

If \(y: W \to S \) is another parametrization, then

\[f \circ y = (f \circ \tilde{x}) \circ (\tilde{x}^{-1} \circ y) \]

is also smooth, smooth by Prop 1.

2. Similarly for \(f: V \to \mathbb{R}^m \) vector-valued function.

Example: If a regular surface \(S \) is inside an open set \(U \subset \mathbb{R}^3 \), then for any smooth function \(f: V \to \mathbb{R} \), the restriction \(f|_S: S \to \mathbb{R} \) is differentiable.

Reason: Any parametrization \(\tilde{x}: U \subset \mathbb{R}^2 \to S \) maps \(p \),

\(f \circ \tilde{x}: U \to \mathbb{R} \) is composition of smooth functions,

\(f|_S \circ \tilde{x} = f \circ \tilde{x} \).