§1.7 Global properties of plane curves

Def. A curve \(\alpha: I = [a, b] \to \mathbb{R}^2 \) is

- **regular**, if \(\alpha'(t) \neq 0 \ \forall t \in I \) (not automatic if \(\alpha \in C^1 \))
- **closed**, if \(\alpha(a) = \alpha(b) \) and \(\alpha^{(k)}(a) = \alpha^{(k)}(b) \ \forall k = 0, 1, 2, \ldots \)
- **simple**, if it is non-self-intersecting, i.e.,
 - if \(t_1, t_2 \in [a, b], \ t_1 \neq t_2 \), then \(\alpha(t_1) \neq \alpha(t_2) \)

\(\bigcirc \) non-simple, closed.

§5.7 Jordan Curve Theorem

Let \(C \) be a simple closed curve in \(\mathbb{R}^2 \).

Then its complement \(\mathbb{R}^2 \setminus C \) consists of exactly 2 connected components \(\Omega_0, \Omega_1 \).

- \(\Omega_0 \) ... bounded, called the interior of \(C \)
- \(\Omega_1 \) unbounded, exterior

and \(\partial \Omega_0 = \partial \Omega_1 = C \).

\(C = \alpha: I \to \mathbb{R}^2 \) is called **positively oriented** if its interior is on left side when we move along \(C \).

We call \(\text{Area}(\Omega_0) \) the area enclosed by \(C \).

Rk The version \(C \in C^1 \) is in §5.7.

A curve is always \(C^0 \).

In the direction of increasing parameters.
A. Isoperimetric inequality

The problem: Of all simple closed curves in the plane with a given length l, which one bounds the largest area?

It means the area of its interior.

The answer is a circle.

Old arguments assume the existence of such an area maximizer, but it needs to be proved.

\[\text{area formula} \quad \text{Let } \mathbf{d}(t) = (x(t), y(t)), \quad t \in [a, b], \text{ be a piecewise } C^1 \text{ pos. oriented simple closed curve in } \mathbb{R}^2. \text{ The area it bounds is} \]

\[A = \int_a^b x \, y' \, dt = -\int_a^b x' \, y \, dt = \frac{1}{2} \int_a^b (xy' - x'y) \, dt \]

MATH 317: \quad \text{a \ldots piecewise C}^1 \text{ plane}

Theorem Let C be a simple closed curve with length l, and let A be the area of the region bounded by C. Then

\[4\pi A \leq l^2 \]

and equality holds iff C is a circle.
proof. Let \(E \& E' \) be 2 parallel lines enclosing \(C \). Move them until they first meet \(C \). Call the new parallel lines \(L \& L' \).

Let \(P \& P' \) be the northeast points where \(L \& L' \) meet \(C \).

(there could be other points where \(L \& L' \) meet \(C \))

parametrize \(C \) by arc length \(s \):

\[
\alpha(s) : \ [0, l] \rightarrow \mathbb{R}^2 \\
= (x(s), y(s))
\]

such that \(P = \alpha(0) \) and \(P' = \alpha(s_1) \), & \(C \) is p.s. oriented.

Let \(S' \) be a circle which is tangent to both \(L \& L' \) and does not meet \(C \). We may a coordinate system with the center of \(S' \) being the origin, and the \(y \)-axis parallel to \(L, L' \), \(L : x = r \), \(L' : x = -r \).
we may parametrize S^1 by

$$\overline{a}(s) = (\overline{x}(s), \overline{y}(s)) \quad \text{with} \quad \overline{x}(s) = x(s), \quad s \in [0, l].$$

The choice of $\overline{y}(s)$ is

\[
\begin{cases}
\overline{y}(s) \geq 0 & 0 < s < s_1, \\
\overline{y}(s) \leq 0 & s_1 < s < l
\end{cases}
\]

$\overline{a}(s)$ may move back & forth on S^1

$$A = \int_0^l xy' \, ds, \quad \overline{A} = \text{area}(S^1) = \pi r^2 = -\int_0^l \overline{y} x' \, ds.$$

$$A + \overline{A} = \int_0^l (xy' - \overline{y} x') \, ds$$

Cauchy - Schwarz inequality:

$$ab + cd \leq \sqrt{a^2 + c^2} \cdot \sqrt{b^2 + d^2}; \quad "=\" \text{ holds if } \quad (a, c) \parallel (b, d) \quad \text{iff } \quad ad = bc$$

$$= \int_0^l \sqrt{x^2 + \overline{y}^2} \cdot \sqrt{y^2 + x'^2} \, ds \quad = 1$$

$$= \int_0^l r \, ds = lr$$

Note

$$A + \overline{A} = 2\sqrt{A\overline{A}} = 2r\sqrt{4\pi r}$$

Thus

$$2r\sqrt{4\pi} \leq lr, \quad 4\pi r \leq l^2$$

If equality holds,

$$xx' = -\overline{y}y' \quad \text{for all } s \quad \text{where } a \text{ is } C^1.$$
\[xx' = -\sqrt{r^2-x^2} \ y' \quad \quad x^2 + y^2 = 1 \]

\[\frac{x^2 - x'^2}{r^2} = (r^2-x^2)(1-x'^2) = \frac{r^2-x^2 - r^2 x^2 + x^2 x'^2}{r^2} \]

\[x'^2 = \frac{r^2-x^2}{r^2} \]

\[\frac{dx}{\sqrt{r^2-x^2}} = \pm \frac{ds}{r} \]

\[\arcsin \frac{x}{r} = \pm \frac{s-s_0}{r} \]

\[\frac{x}{r} = \pm \sin \frac{s-s_0}{r} \]

\[y' = -\frac{x}{\sqrt{r^2-x^2}} \quad x' = \pm \frac{x}{r} = \pm \sin \frac{s-s_0}{r} \]

\[y = \pm r \cos \frac{s-s_0}{r} + y_0 \]

\[x^2 + (y-y_0)^2 = r^2. \]

Hence \(C \) is a circle of radius \(r \) if \(\alpha(s) \in C^1(0, \ell) \).

Rk It would take some extra work if we only assume \(C \) is piecewise \(C^1 \).