§ 1.1 curves & their derivatives

A curve is a vector-valued function of 1 variable

\[\vec{r}(t) = (x(t), y(t)) \text{ or } \vec{r}(t) = (x(t), y(t), z(t)) \]

usually \(t \) can be time and \(\vec{r}(t) \) is the position of a particle at time \(t \). The set

\[\{ \vec{r}(t) : \ a \leq t \leq b \} \]

is a curve in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) :

\[\vec{r}(a) \to \vec{r}(b) \]

\(t \) can be a parameter that is not time.

EX 1 The circle \(x^2 + y^2 = a^2 \) is given by

\[\vec{r}(\theta) = (a \cos \theta, a \sin \theta) \]

\[0 \leq \theta \leq 2\pi \]

\[\vec{r}_2(x) = (x, \sqrt{a^2 - x^2}) \]

\[-1 \leq x \leq 1 \]

is part of the circle

\[\vec{r}_3(x) = (x, -\sqrt{a^2 - x^2}), \quad -1 \leq x \leq 1 \]

is the other part.
Exercise \(\vec{F}_1(t) = (a \sin(2t), a \cos(2t)) \),
\(0 \leq t \leq \pi \)
also describes the circle.

Curves often occur as the intersection of 2 surfaces.

EX2. The intersection of the 2 spheres
\[S_1: (x-1)^2 + y^2 + z^2 = 1 \]
\[S_2: x^2 + (y-1)^2 + z^2 = 1 \]
is a circle. The difference of the two equations is
\[-2x + 2y = 0, \quad \text{or} \quad x = y.\]

If we use \(x = y = t \) as parameter, we get
\[z^2 = 1 - t^2 + 2t - 1 - t^2 = 2t - 2t^2 \]
\[2t - 2t^2 \geq 0 \quad \Rightarrow \quad 0 \leq t \leq 1 \]

The fan \(\vec{F}_1(t) = (t, t, \sqrt{2t - 2t^2}) \)
only gives part of the circle similar to Ex 1.

From \(z^2 + 2(t-\frac{1}{2})^2 = 2 \), \(2z^2 + t(t-\frac{1}{2})^2 = 1 \)
we can parameterize \(z = \sqrt{2} \cos \theta, t = \frac{1}{2} \sin \theta + \frac{1}{2} \)
\(\vec{F}_2(t) = \left(\frac{1}{2} \sin \theta + \frac{1}{2}, \frac{1}{2} \sin \theta + \frac{1}{2}, \sqrt{2} \cos \theta \right) \)
\(0 \leq \theta \leq 2\pi \).
Viewed from top: \(P \left(\frac{1}{2}, \frac{1}{2}, 0 \right) \) is the center.

radius = \(\frac{\sqrt{2}}{2} \).

\[|OP| = |PQ| \]