1. (§13.4#16) Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position:

\[\vec{a}(t) = \sin t \hat{i} + 2 \cos t \hat{j} + 6t \hat{k}, \quad \vec{v}(0) = -\hat{k}, \quad \vec{r}(0) = \hat{j} - 4\hat{k}. \]

Solution. We have

\[
\vec{v}(t) = \vec{v}(0) + \int_0^t \vec{a}(u)du \\
= (0, 0, -1) + \int_0^t (\sin u, 2 \cos u, 6u)du \\
= (1 - \cos t, 2 \sin t, 3t^2 - 1)
\]

\[
\vec{r}(t) = \vec{r}(0) + \int_0^t \vec{v}(u)du \\
= (0, 1, -4) + \int_0^t (1 - \cos u, 2 \sin u, 3u^2 - 1)du \\
= (0, 1, -4) + (t - \sin t, 2 - 2 \cos t, t^3 - t) \\
= (t - \sin t, 3 - 2 \cos t, t^3 - t - 4)
\]

2. (#23) A projectile is fired with an initial speed of 200 m/s and angle of elevation 60°. Find (a) the range of the projectile, (b) the maximum height reached, and (c) the speed at impact.

Solution. Let \(\vec{r}(t) \) denote the position of the projectile, \(\vec{v} = \vec{r}' \), and \(\vec{a} = \vec{v}' \). We have

\[
\vec{r}(0) = (0, 0), \quad \vec{v}(0) = (200 \cos 60^\circ, 200 \sin 60^\circ) = (100, 100\sqrt{3}), \quad \vec{a} = (0, -g).
\]

We have

\[
\vec{v}(t) = \vec{v}(0) + \int_0^t \vec{a}(u)du = (100, 100\sqrt{3} - gt).
\]

\[
\vec{r}(t) = \vec{r}(0) + \int_0^t \vec{v}(u)du = (100t, 100\sqrt{3}t - \frac{1}{2}gt^2).
\]

Let \(t_1 > 0 \) denote the time the projectile lands. We have \(y(t_1) = 100\sqrt{3}t_1 - \frac{1}{2}gt_1^2 = 0 \), thus

\[
t_1 = \frac{200\sqrt{3}}{g}.
\]

The range is

\[
x(t_1) = 100t_1 = \frac{20000\sqrt{3}}{g}
\]
The maximum height is

\[y(t_1/2) = 50\sqrt{3}t_1 - \frac{1}{8}gt_1^2 = \frac{15000}{g} \]

Since \(\vec{v}(t_1) = (100, -100\sqrt{3}) \), the speed at impact is

\[|\vec{v}(t_1)| = 100\sqrt{1 + 3} = 200. \]

If we take \(g = 9.8\, \text{m/s}^2 \), then \(x(t_1) \approx 3534.8 \) and \(y(t_1/2) \approx 1530.6 \).

3. (#28) A batter hits a baseball 3 ft above the ground toward the center field fence, which is 10 ft high and 400 ft from home plate. The ball leaves the bat with speed 115 ft/s at an angle 50° above the horizontal. Is it a home run?

Solution. The gravity constant is \(g = 32.174 \, \text{ft/s}^2 \). Let \(\vec{r}(t) \) denote the position of the ball, \(\vec{v} = \vec{r}' \), and \(\vec{a} = \vec{v}' \). We have

\[\vec{r}(0) = (0, 3), \quad \vec{v}(0) = (115\cos 50°, 115\sin 50°) \quad \vec{a} = (0, -g). \]

We have

\[\vec{v}(t) = \vec{v}(0) + \int_0^t \vec{a}(u)du = \vec{v}(0) + (0, -gt). \]

\[\vec{r}(t) = \vec{r}(0) + \int_0^t \vec{v}(u)du = (115(\cos 50°)t, 3 + 115(\sin 50°)t - \frac{1}{2}gt^2). \]

Suppose the ball flies over the fence at time \(t_1 > 0 \). We have

\[x(t_1) = 400 = 115(\cos 50°)t_1, \quad t_1 = \frac{400}{115\cos 50°} = 5.411. \]

At time \(t_1 \) the height of the ball is at least 10 for a home run, that is

\[10 \leq y(t_1) = 3 + 115(\sin 50°)t_1 - \frac{1}{2}gt_1^2. \]

We get

\[g \leq 32.0822, \]

which is incorrect. Hence it is not a home run.

Remark. If you take \(g = 32 \), which is less accurate, then the answer becomes YES.

4. (#32) A ball with mass 0.8 kg is thrown southward into the air with a speed of 30 m/s at an angle of 30° to the ground. A west wind applies a steady force of 4 N to the ball in an easterly direction. Where does the ball land and with what speed?

Solution. Let the east be the positive \(x \) direction, the north be the positive \(y \) direction, and the ball be initially at the origin. Let \(\vec{r}(t) = (x, y, z)(t) \) denote the position of the ball, \(\vec{v} = \vec{r}' \), and \(\vec{a} = \vec{v}' \). We have

\[\vec{r}(0) = (0, 0, 0), \quad \vec{v}(0) = (0, -30\cos 30°, 30\sin 30°) \quad \vec{a} = (4/0.8, 0, -g). \]

We have

\[\vec{v}(t) = \vec{v}(0) + \int_0^t \vec{a}(u)du = (5t, -15\sqrt{3}, 15 - gt). \]
\[\mathbf{r}(t) = \mathbf{r}(0) + \int_0^t \mathbf{\ddot{r}}(u) \, du = \left(\frac{5}{2} t^2, -15\sqrt{3} t, 15 t - \frac{1}{2} g t^2 \right). \]

Suppose the ball lands at time \(t_1 > 0 \). We have \(0 = z(t_1) = 15 t_1 - \frac{1}{2} g t_1^2 \), thus

\[t_1 = \frac{30}{g} \approx 15.306 \text{ (s)}, \]

if we take \(g = 9.8 \text{m/s}^2 \). The ball lands at

\[\mathbf{r}(t_1) = \left(\frac{2250}{g^2}, \frac{-450\sqrt{3}}{g}, 0 \right) \approx (23.43, -79.53, 0), \]

with landing velocity \(\mathbf{\ddot{r}}(t_1) = \left(\frac{150}{g}, -15\sqrt{3}, -15 \right) \) and speed

\[|\mathbf{\ddot{r}}(t_1)| = \left| \left(\frac{150}{g}, -15\sqrt{3}, -15 \right) \right| \approx 33.68 \text{ (m/s)} \]

5. (§16.1) Sketch the vector field \(\mathbf{F} = x \mathbf{i} + (x+y) \mathbf{j} \).

Solution.

\[\mathbf{F} = (x, x+y) \]

6. (#24) Find the gradient vector field \(\nabla f \) of \(f(x,y,z) = x^2 ye^{y/z} \).

Solution.

\[\nabla f = (2xye^{y/z}, x^2(1+y/z)e^{y/z}, -x^2 y^2 e^{y/z} z^2) \]

7. (#25) Find the gradient vector field \(\nabla f \) of \(f(x,y) = \frac{1}{2} (x-y)^2 \) and sketch it.

Solution. \(\nabla f = (x-y, y-x) \).
8. (§16.2#2) Evaluate the line integral \(I = \int_C (x/y) \, ds \), where \(C \) is the curve \(x = t^3, \ y = t^4, \ 1 \leq t \leq 2 \).

Solution.

\[
(x', y') = (3t^2, 4t^3), \quad |(x', y')| = (9t^4 + 16t^6)^{1/2} = t^2(9 + 16t^2)^{1/2}
\]

\[
I = \int_1^2 t^2(9 + 16t^2)^{1/2} \, dt = \int_1^2 t(9 + 16t^2)^{1/2} \, dt
\]

Let \(u = 9 + 16t^2 \) so that \(du = 32t \, dt \), we get

\[
I = \int_{25}^{73} \frac{1}{32} u^{1/2} \, du = \frac{1}{48} \left[u^{3/2}\right]_{25}^{73} = \frac{1}{48} (73^{3/2} - 125)
\]

9. (#3) Evaluate the line integral \(I = \int_C xy^4 \, ds \), where \(C \) is the right half of the circle \(x^2 + y^2 = 16 \).

Solution. Parametrize the right half circle by

\[
\vec{r}(t) = (4 \cos t, 4 \sin t), \quad -\frac{\pi}{2} \leq t < \frac{\pi}{2}.
\]

We have

\[
\vec{r}'(t) = (-4 \sin t, 4 \cos t), \quad |\vec{r}'(t)| = 4.
\]

Thus

\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (4 \cos t)(4 \sin t)^4 \, dt
\]

Let \(u = \sin t \), so that \(du = \cos t \, dt \), and

\[
I = 4^6 \int_{-1}^{1} u^4 \, du = 4^6 \left[\frac{1}{5} u^5 \right]_{-1}^{1} = \frac{2^{13}}{5} = 1638.4
\]
10. (#5) Evaluate the line integral \(I = \int_C (x^2y + \sin x) \, dy \), where \(C \) is the arc of the parabola \(y = x^2 \) from \((0,0)\) to \((\pi, \pi^2)\).

Solution. Parametrize the arc of the parabola by

\[\mathbf{r}(t) = (t, t^2), \quad 0 \leq t < \pi. \]

We have \(y' = 2t \), and

\[
I = \int_0^\pi (t^2t^2 + \sin t)2t \, dt = \int_0^\pi (2t^5 + 2t \sin t) \, dt
\]

\[
= \left[\frac{t^6}{3} - 2t \cos t + 2 \sin t \right]_0^\pi = \frac{\pi^6}{3} + 2\pi.
\]

11. (#7) Evaluate the line integral \(I = \int_C (x + 2y) \, dx + x^2 \, dy \), where \(C \) consists of line segments from \((0,0)\) to \((2,1)\) and from \((2,1)\) to \((3,0)\).

Solution. Parametrize the two line segments by

\[C_1 : \mathbf{r}(t) = (2t, t), \quad 0 \leq t \leq 1 \]

and

\[C_2 : \mathbf{q}(t) = (2 + t, 1 - t), \quad 0 \leq t \leq 1. \]

We have \(\mathbf{r}'(t) = (2, 1) \) and \(\mathbf{q}'(t) = (1, -1) \), and

\[
I = \int_0^1 ((2t + 2t)2 + (2t)^21) \, dt + \int_0^1 ((2 + t + 2(1 - t))1 + (2 + t)^2(-1)) \, dt
\]

\[
= \int_0^1 (3t^2 + 3t) \, dt = \left[t^3 + \frac{3}{2}t^2 \right]_0^1 = \frac{5}{2}.
\]

12. (#13) Evaluate the line integral \(I = \int_C xy e^{yz} \, dy \) where \(C \) is the curve \(x = t, y = t^2, z = t^3, 0 \leq t \leq 1. \)

Solution. We have \(y' = 2t \) and

\[
I = \int_0^1 t \cdot t^2 e^{t^5}2t \, dt = \int_0^1 2t^4 e^{t^5} \, dt
\]

Let \(u = t^5 \). Then \(du = 5t^4 \, dt \) and

\[
I = \frac{2}{5} \int_0^1 e^u \, du = \frac{2}{5}(e - 1)
\]