1. The vector field \(\vec{F} = \frac{2z\hat{j} - 2y\hat{k}}{x^2 + y^2 + z^2} \) has a vector potential. Check its screening test, and find a vector potential \(\vec{A} \).

2. Let \(A = \frac{1}{2} \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \) and \(\omega = (a, b, c)^T \) for constants \(a, b, c \). Verify that
\[
A\vec{x} = \frac{1}{2} \omega \times \vec{x}, \quad \text{curl}(A\vec{x}) = \omega.
\]

Here we treat both \(\vec{x} = (x, y, z)^T \) and \(\omega \) as column vectors.

3. The vector field \(\vec{F}(x, y) = (-y, x)^T \) at the point \((2, 1)\) can be decomposed by Taylor expansion in the form
\[
\vec{F}(x, y) = \vec{F}_0 + S \left(\frac{x - 2}{y - 1} \right) + A \left(\frac{x - 2}{y - 1} \right) + \text{error}
\]
where \(\vec{F}_0 \) is a constant vector, \(S \) is a constant symmetric matrix, \(A \) is a constant anti-symmetric matrix, and “error” means a vector function \(\vec{G}(x, y) \) satisfying
\[
\lim_{(x, y) \to (2, 1)} \frac{|\vec{G}(x, y)|}{|x - 2| + |y - 1|} = 0.
\]
Find \(\vec{F}_0, S \) and \(A \). Is there any local stretching? Is there any local rotation?

4. Repeat the previous problem for \(\vec{F}(x, y) = (x - y, x + y)^T \).

5. Repeat the previous problem for \(\vec{F}(x, y) = \frac{(-y, x)^T}{x^2 + y^2} \).

6. Compute the outward flux \(\iint_S \vec{F} \cdot d\vec{S} \) where \(\vec{F} = \frac{2z\hat{j} - 2y\hat{k}}{x^2 + y^2 + z^2} \) and \(S \) is the boundary of the solid \(V \) enclosed by \(z = (x - 3)^2 + y^2 - 4 \) and \(z = \cos(x + y) + 10 \).

7. Redo H7 Problem 1(b) using Divergence theorem: Let \(S \) be the upper hemisphere \(x^2 + y^2 + z^2 = 4, \ z \geq 0 \). Find the upward flux \(\iint_S \vec{F} \cdot d\vec{S} \) for \(\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k} \).