1. Redo H3 problem 6 by first showing that the vector field is conservative and then using CLP4 Theorem 2.4.2 or §2.4 Theorem 1 in my lectures.

2. Redo H3 problem 7 as above.

3. Redo H3 problem 8 as above.

4. Show that the line integral \(I = \int_C (1 + xy)e^{xy}dx + (x^2e^{xy} - 3y^2)dy \), with \(C \) any path from \((1, 0) \) to \((2, 1) \), is independent of path and evaluate the integral.

5. Let \(C \) be the curve from \((0, 0, 0) \) to \((6, 18, 36) \) along the intersection of the surfaces \(2y = x^2 \) and \(6z = x^3 \).
 (a) Find \(\int_C \rho \, ds \) if \(s \) is arc length along \(C \) and \(\rho = 8x \).
 (b) Find \(\int_C \vec{F} \cdot d\vec{r} \) if \(\vec{F} = (2 + y \sin(\pi z))\hat{i} + (-1 + x \sin(\pi z))\hat{j} + \pi xy \cos(\pi z)\hat{k} \).

6. Sketch the given sets and determine whether or not they are (a) open, (b) connected, and (c) simply connected.
 \(D_1 = \{(x, y) \mid 2 < y < 3\} \quad D_2 = \{(x, y) \mid 2 < |y| < 3\} \)
 \(D_3 = \{(x, y) \mid 0 < x^2 + y^2 \leq 3\} \quad D_4 = \{(x, y) \mid 1 < x^2 + y^2 \leq 3, \; x > 0\} \)

7. Let \(\vec{F}(x, y) = \frac{-y}{x^2 + y^2}\hat{i} + \frac{x}{x^2 + y^2}\hat{j} \). Show that
 \[
 \oint_C \vec{F} \cdot d\vec{r} = 0
 \]
 for any closed curve \(C \) in \(\mathbb{R}^2 \) that stays in the lower half plane \(D = \{(x, y) : y < 0\} \).

(continued to next page)
8. Among the four vector fields sketched below, exactly one of them is conservative. Determine which three vector fields are not conservative and explain why.