MATH 317 Assignment 2

§1.3–§1.6, §2.1

1. The function \(f(x) = x^3 - x \) has local minimum \(f\left(\frac{1}{\sqrt{3}}\right) = \frac{-2\sqrt{3}}{9} \). Find the centres of the osculating circles of the curve \(y = x^3 - x \) at the points \(P\left(\frac{1}{\sqrt{3}}, -\frac{2\sqrt{3}}{9}\right) \) and \(Q(1, 0) \).

 \textbf{Solution.} We have \(f'(x) = 3x^2 - 1 \) and \(f''(x) = 6 \). The curvature is
 \[
 \kappa(x) = \frac{|f''|}{(1 + (f')^2)^{3/2}}
 \]
 Thus
 \[
 \kappa\left(\frac{1}{\sqrt{3}}\right) = \frac{\frac{6\sqrt{3}}{9}}{(1 + 0)^{3/2}} = \frac{2\sqrt{3}}{3}, \quad \kappa(1) = \frac{6}{(1 + 2)^{3/2}} = \frac{6}{5^{3/2}}.
 \]
 At \(P \), as a local minimum, \(\mathbf{N} = (0, 1) \), and
 \[
 \mathbf{r}_c = P + \frac{1}{\kappa} \mathbf{N} = \left(\frac{1}{\sqrt{3}} - \frac{2\sqrt{3}}{9}, \frac{\sqrt{3}}{6}\right) + (0, 1) = \left(\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{18}\right)
 \]
 At \(Q \), as \(f'(1) = 2 \), a tangent vector is \((1, 2) \). The normal vector \(\mathbf{N} \) is orthogonal to \((1, 2) \) and pointing upward as the curve is concave up. Thus
 \[
 \mathbf{N} = \frac{1}{\sqrt{5}}(-2, 1),
 \]
 and
 \[
 \mathbf{r}_c = Q + \frac{1}{\kappa} \mathbf{N} = (1, 0) + \frac{5^{3/2}}{6} \cdot \frac{1}{\sqrt{5}}(-2, 1) = (\frac{-2}{3}, \frac{5}{6})
 \]

2. Find the unit tangent, unit normal and binormal vectors and the curvature and torsion of the curve
 \[
 \mathbf{r}(t) = \sin(3t) \, \mathbf{i} + \cos(3t) \, \mathbf{j} + 4t \, \mathbf{k}.
 \]

 \textbf{Solution.}
 \[
 \mathbf{r}'(t) = 3\cos(3t) \, \mathbf{i} - 3\sin(3t) \, \mathbf{j} + 4 \, \mathbf{k}.
 \]
 \[
 |\mathbf{r}'(t)| = \sqrt{9\cos^2(3t) + 9\sin^2(3t) + 16} = 5.
 \]
 \[
 \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{3\cos(3t) \, \mathbf{i} - 3\sin(3t) \, \mathbf{j} + 4 \, \mathbf{k}}{5}.\]
 \[
 \mathbf{T}'(t) = -\frac{9\sin(3t) \, \mathbf{i} - 9\cos(3t) \, \mathbf{j}}{5}, \quad |\mathbf{T}'| = \frac{9}{5}
 \]
 \[
 \kappa(t) = \frac{|\mathbf{T}'|}{|\mathbf{T}'|} = \frac{9/5}{9} = \frac{9}{25}.
 \]
 \[
 \mathbf{N}(t) = \frac{\mathbf{T}'}{|\mathbf{T}'|} = -\sin(3t) \, \mathbf{i} - \cos(3t) \, \mathbf{j}.
 \]
4. Suppose that the curve C is the intersection of the cylinder $x^2 + y^2 = 1$ with the surface $z = x^2 - y^2$.

(a) Find a parameterization of C.

(b) Determine the curvature of C at the point $P = (1/\sqrt{2}, 1/\sqrt{2}, 0)$.

(c) Find the osculating plane to C at the point P. In general, the osculating plane to a curve $\mathbf{r}(t)$ at the point $\mathbf{r}(t_0)$ is the plane which fits the curve best at $\mathbf{r}(t_0)$. It passes through $\mathbf{r}(t_0)$ and has normal vector $\mathbf{B}(t_0)$.

(d) Find the radius and the centre of the osculating circle to C at the point P.

Solution. (a) The curve $x^2 + y^2 = 1$ is a circle of radius 1. So we can parametrize it by $x(\theta) = \cos \theta$, $y(\theta) = \sin \theta$, $0 \leq \theta < 2\pi$. The z-coordinate of any point on the intersection is determined by $z = x^2 - y^2$. So we can use the parametrization

$$\mathbf{r}(\theta) = \cos \theta \mathbf{i} + \sin \theta \mathbf{j} + [\cos^2 \theta - \sin^2 \theta] \mathbf{k}$$

$$= \cos \theta \mathbf{i} + \sin \theta \mathbf{j} + \cos(2\theta) \mathbf{k}, \quad 0 \leq \theta < 2\pi.$$
(b) Note that \(\vec{r}(\theta) = P \) when \(\theta = \pi/4 \). For general \(\theta \), the velocity and acceleration are

\[
\vec{v}(\theta) = \vec{r}'(\theta) = -\sin \theta \hat{i} + \cos \theta \hat{j} - 2\sin(2\theta) \hat{k}
\]
\[
\vec{a}(\theta) = \vec{v}'(\theta) = -\cos \theta \hat{i} - \sin \theta \hat{j} - 4\cos(2\theta) \hat{k}
\]

In particular,

\[
\vec{v}(\frac{\pi}{4}) = -\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} - 2 \hat{k}
\]
\[
\vec{a}(\frac{\pi}{4}) = -\frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{j}
\]
\[
|\vec{v}(\frac{\pi}{4})| = \sqrt{5}
\]
\[
\vec{v}(\frac{\pi}{4}) \times \vec{a}(\frac{\pi}{4}) = -\sqrt{2} \hat{i} + \sqrt{2} \hat{j} + \hat{k}
\]
\[
|\vec{v}(\frac{\pi}{4}) \times \vec{a}(\frac{\pi}{4})| = \sqrt{5}
\]

So the curvature

\[
\kappa(\frac{\pi}{4}) = \frac{|\vec{v}(\frac{\pi}{4}) \times \vec{a}(\frac{\pi}{4})|}{|\vec{v}(\frac{\pi}{4})|^3} = \frac{1}{5}.
\]

(c) The binormal to \(C \) at \(P \) is

\[
\hat{B} = \frac{\vec{v}(\frac{\pi}{4}) \times \vec{a}(\frac{\pi}{4})}{|\vec{v}(\frac{\pi}{4}) \times \vec{a}(\frac{\pi}{4})|} = \frac{-\sqrt{2} \hat{i} + \sqrt{2} \hat{j} + \hat{k}}{\sqrt{5}}
\]

So the osculating plane to \(C \) at \(P \) is

\[
(-\sqrt{2}, \sqrt{2}, 1) \cdot (x - \frac{1}{\sqrt{2}}, y - \frac{1}{\sqrt{2}}, z) = 0,
\]

or

\[
z = \sqrt{2}x - \sqrt{2}y.
\]

(d) From the computations in parts (b) and (c), and \(\hat{T} = \frac{\vec{v}}{|\vec{v}|} \), we have

\[
\hat{N}(\frac{\pi}{4}) = \hat{B}(\frac{\pi}{4}) \times \hat{T}(\frac{\pi}{4}) = \frac{-\sqrt{2} \hat{i} + \sqrt{2} \hat{j} + \hat{k}}{\sqrt{5}} \times \frac{-\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} - 2 \hat{k}}{\sqrt{5}} = \frac{-\hat{i} - \hat{j}}{\sqrt{2}}
\]

So the osculating circle has radius \(1/\kappa(\frac{\pi}{4}) = 5 \) and centre

\[
\vec{r}_c(\frac{\pi}{4}) = \vec{r}(\frac{\pi}{4}) + \frac{1}{\kappa(\frac{\pi}{4})} \hat{N}(\frac{\pi}{4}) = (1/\sqrt{2}, 1/\sqrt{2}, 0) - 5(1/\sqrt{2}, 1/\sqrt{2}, 0) = (-2\sqrt{2}, -2\sqrt{2}, 0)
\]

5. Find the mass and centre of mass of the curve

\[
\vec{r}(t) = t^2 \hat{i} + 2t \hat{j} + \frac{1}{3} t^3 \hat{k}, \quad 0 \leq t \leq 2,
\]

with density \(\rho(t) = t^2 \).

\textit{Solution}. By Problem 3,

\[
|\vec{r}'(t)| = t^2 + 2.
\]
Thus the mass is
\[M = \int \rho \, ds = \int_0^2 t^2(t^2 + 2) \, dt = \left[\frac{1}{5} t^5 + \frac{2}{3} t^3 \right]_0^2 = \frac{32}{5} + \frac{16}{3} = \frac{176}{15} \]

The centre of mass \((\bar{x}, \bar{y}, \bar{z})\) is given by
\[
\bar{x} = \frac{1}{M} \int x \rho \, ds = \frac{1}{M} \int_0^2 t^2 t^2(t^2 + 2) \, dt = \frac{1}{M} \left[\frac{1}{7} t^7 + \frac{2}{5} t^5 \right]_0^2 = \frac{15}{176} \left(\frac{128}{7} + \frac{64}{5} \right) = \frac{204}{77}
\]
\[
\bar{y} = \frac{1}{M} \int y \rho \, ds = \frac{1}{M} \int_0^2 2t^2(t^2 + 2) \, dt = \frac{1}{M} \left[\frac{1}{3} t^6 + t^4 \right]_0^2 = \frac{15}{176} \left(\frac{64}{3} + 16 \right) = \frac{35}{11}
\]
\[
\bar{z} = \frac{1}{M} \int z \rho \, ds = \frac{1}{M} \int_0^2 \frac{1}{3} t^3 t^2(t^2 + 2) \, dt = \frac{1}{3M} \left[\frac{1}{8} t^8 + \frac{1}{3} t^6 \right]_0^2 = \frac{5}{176} \left(32 + \frac{64}{3} \right) = \frac{50}{33}
\]

6. Suppose Mr. Hinton hit a baseball 1 m above the ground toward the centre field fence, which is 3 m higher than and 120 m from the home plate. Suppose the ball leaves the bat with 40 m/s speed at angle 50° above the horizontal. Is it a home run?

Hint. \(\cos 50° \approx 0.6428, \sin 50° \approx 0.7660, \) gravity constant \(g = 9.8 \text{ m/s}^2. \)

Solution. Denote the trajectory of the ball as
\[\vec{r}(t) = x(t) \hat{i} + y(t) \hat{j}. \]

We have
\[\vec{r}(0) = \hat{j}, \quad \vec{r}'(0) = 40 \cos 50° \hat{i} + 40 \sin 50° \hat{j}, \quad \vec{r}''(t) = -g \hat{j}. \]

Let \(t_1 \) be the time such that the ball reaches the fence, \(x(t_1) = 120. \) The question is whether or not \(y(t_1) > 3? \) We have
\[
\vec{r}'(t) = \vec{r}'(0) + \int_0^t \vec{r}'' \, dt = 40 \cos 50° \hat{i} + (40 \sin 50° - gt) \hat{j}
\]
\[
\vec{r}(t) = \vec{r}(0) + \int_0^t \vec{r}' \, dt = 40t \cos 50° \hat{i} + (1 + 40t \sin 50° - \frac{1}{2}gt^2) \hat{j}
\]

Thus \(40t_1 \cos 50° = 120, \) \(t_1 = \frac{3}{\cos 50°}, \)
\[
y(t_1) - 3 = (1 + 40t_1 \sin 50° - \frac{1}{2}gt_1^2) - 3 = -2 + 120 \frac{\sin 50°}{\cos 50°} - 4.9 \left(\frac{3}{\cos 50°} \right)^2
\]
\[
= -2 + 143.01 - 106.73 > 0.
\]

Yes, it is a home run!

7. Sketch each of the following vector fields, by drawing a figure like Figure 2.1.1 in the CLP-IV text.

(a) \(\vec{v}(x, y) = 2x \hat{i} - \hat{j}. \)
(b) \(\vec{v}(x, y) = \frac{y \hat{i} - x \hat{j}}{\sqrt{x^2 + y^2}}. \)

Solution. (a) The vertical component of \(\vec{v}(x, y) = 2x \hat{i} - \hat{j} \) is always \(-1. \) Its horizontal component is \(2x, \) so that
* \(\vec{v}(x, y) \) is rightward pointing when \(x > 0 \) and leftward pointing when \(x < 0, \) and
* the magnitude of the horizontal component grows linearly with the distance from the \(y \)-axis.
It is sketched in the figure on the left below.

\[\mathbf{v}(x, y) = \mathbf{y} \mathbf{i} - x \mathbf{j} / \sqrt{x^2 + y^2} \]

* is of length 1 and
* is perpendicular to the radius vector \(x \mathbf{i} + y \mathbf{j} \).
* \(\mathbf{v}(x, y) \) is rightward pointing when \(y > 0 \) and leftward pointing when \(y < 0 \), and
* \(\mathbf{v}(x, y) \) is downward pointing when \(x > 0 \) and upward pointing when \(x < 0 \).

It is sketched in the figure on the right above.

8. Let \(\mathbf{F} = P \mathbf{i} + Q \mathbf{j} \) be the two dimensional vector field sketched below. Determine the signs of \(P, Q, \frac{\partial Q}{\partial x} \) and \(\frac{\partial Q}{\partial y} \) at the point \(A \).

Solution. The arrows near the point \(A \) are pointing to the right, indicating that \(P > 0 \), and upward, indicating that \(Q > 0 \). Moving from left to right near \(A \), the vertical component of the arrows is decreasing, indicating that \(\frac{\partial Q}{\partial x} < 0 \). Moving vertically upwards near \(A \), the vertical component of the arrows is increasing, indicating that \(\frac{\partial Q}{\partial y} > 0 \).