MATHEMATICS 317 April 2001 Final Exam

[10] 1) Find and sketch the field lines of the vector field \(\vec{F} = x \hat{i} + 3y \hat{j} \).

[15] 1) Let \(C \) be the curve from \((0, 0, 0) \) to \((1, 1, 1) \) along the intersection of the surfaces \(y = x^2 \) and \(z = x^3 \).
 a) Find \(\int_C \vec{F} \cdot d\vec{r} \) if \(\vec{F} = (xz - y) \hat{i} + (x + z) \hat{j} + y \hat{k} \).
 b) Find \(\int_C \rho \, ds \) if \(s \) is arclength along \(C \) and \(\rho = 8x + 36z \).
 c) Find \(\int_C \vec{F} \cdot d\vec{r} \) if \(\vec{F} = \sin y \hat{i} + (x \cos y + z) \hat{j} + (y + z) \hat{k} \).

[15] 3) Let \(S \) be the portion of the elliptical cylinder \(x^2 + \frac{1}{4}y^2 = 1 \) lying between the planes \(z = 0 \) and \(z = 1 \) and let \(\hat{n} \) denote the outward normal to \(S \). Let \(\vec{F} = x \hat{i} + xyz \hat{j} + zy^3 \hat{k} \). Calculate the flux integral \(\int_S \vec{F} \cdot \hat{n} \, dS \) directly, using an appropriate parameterization of \(S \).

[15] 4) Let \(S \) be the portion of the sphere \(x^2 + y^2 + (z - 1)^2 = 4 \) that lies above the \(xy \)-plane. Find the flux of \(\vec{F} = (x^2 + e^{y^2}) \hat{i} + (e^{x^2} + y^2) \hat{j} + (4 + 5x) \hat{k} \) outward across \(S \).

[15] 5) Let \(C_1 \) be the circle \((x - 2)^2 + y^2 = 1 \) and let \(C_2 \) be the circle \((x - 2)^2 + y^2 = 9 \). Let \(\vec{F} = -\frac{x}{x^2+y^2} \hat{i} + \frac{y}{x^2+y^2} \hat{j} \). Find the integrals \(\oint_{C_1} \vec{F} \cdot d\vec{r} \) and \(\oint_{C_2} \vec{F} \cdot d\vec{r} \).

[15] 6) Let \(C \) be the intersection of the paraboloid \(z = 4 - x^2 - y^2 \) with the cylinder \(x^2 + (y - 1)^2 = 1 \), oriented counterclockwise when viewed from high on the \(z \)-axis. Let \(\vec{F} = xz \hat{i} + x \hat{j} + yz \hat{k} \). Find \(\oint_C \vec{F} \cdot d\vec{r} \).

[15] 7) The following statements may be true or false. Decide which. If true, give a proof. If false, provide a counter-example.
 a) If \(\vec{F} \) is any smooth vector field defined in \(\mathbb{R}^3 \) and if \(S \) is any sphere, then \(\iint_S \vec{\nabla} \times \vec{F} \cdot \hat{n} \, dS = 0 \). Here \(\hat{n} \) is the outward normal to \(S \).
 b) If \(\vec{F} \) and \(\vec{G} \) are smooth vector fields in \(\mathbb{R}^3 \) and if \(\oint_C \vec{F} \cdot d\vec{r} = \oint_C \vec{G} \cdot d\vec{r} \) for every circle \(C \), then \(\vec{F} = \vec{G} \).
 c) Let \(\vec{F} \) and \(\vec{G} \) be smooth vector fields defined in \(\mathbb{R}^3 \). Suppose that, for every circle \(C \), we have \(\oint_C \vec{F} \cdot d\vec{r} = \oint_C \vec{G} \cdot \hat{n} \, dS \), where \(S \) is the oriented disk with boundary \(C \). Then \(\vec{G} = \vec{\nabla} \times \vec{F} \).