Another application of the Divergence Theorem occurs in fluid flow. Let \(\mathbf{v}(x, y, z) \) be the velocity field of a fluid with constant density \(\rho \). Then \(\mathbf{F} = \rho \mathbf{v} \) is the rate of flow per unit area. If \(P_0(x_0, y_0, z_0) \) is a point in the fluid and \(B_a \) is a ball with center \(P_0 \) and very small radius \(a \), then \(\text{div} \ \mathbf{F}(P) \approx \text{div} \ \mathbf{F}(P_0) \) for all points in \(B_a \) since \(\text{div} \ \mathbf{F} \) is continuous. We approximate the flux over the boundary sphere \(S_a \) as follows:

\[
\iint_{S_a} \mathbf{F} \cdot d\mathbf{S} = \iiint_{B_a} \text{div} \ \mathbf{F} \ dV \approx \iiint_{B_a} \text{div} \ \mathbf{F}(P_0) \ dV = \text{div} \ \mathbf{F}(P_0) V(B_a)
\]

This approximation becomes better as \(a \to 0 \) and suggests that

\[
\text{div} \ \mathbf{F}(P_0) = \lim_{a \to 0} \frac{1}{V(B_a)} \iiint_{S_a} \mathbf{F} \cdot d\mathbf{S}
\]

Equation 8 says that \(\text{div} \ \mathbf{F}(P_0) \) is the net rate of outward flux per unit volume at \(P_0 \). (This is the reason for the name divergence.) If \(\text{div} \ \mathbf{F}(P) > 0 \), the net flow is outward near \(P \) and \(P \) is called a source. If \(\text{div} \ \mathbf{F}(P) < 0 \), the net flow is inward near \(P \) and \(P \) is called a sink.

For the vector field in Figure 4, it appears that the vectors that end near \(P_1 \) are shorter than the vectors that start near \(P_1 \). Thus the net flow is outward near \(P_1 \), so \(\text{div} \ \mathbf{F}(P_1) > 0 \) and \(P_1 \) is a source. Near \(P_2 \), on the other hand, the incoming arrows are longer than the outgoing arrows. Here the net flow is inward, so \(\text{div} \ \mathbf{F}(P_2) < 0 \) and \(P_2 \) is a sink. We can use the formula for \(F \) to confirm this impression. Since \(\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j} \), we have \(\text{div} \ \mathbf{F} = 2x + 2y \), which is positive when \(y > -x \). So the points above the line \(y = -x \) are sources and those below are sinks.

16.9 Exercises

1-4 Verify that the Divergence Theorem is true for the vector field \(\mathbf{F} \) on the region \(E \).

1. \(\mathbf{F}(x, y, z) = 3x \mathbf{i} + xy \mathbf{j} + 2xz \mathbf{k} \),
 \(E \) is the cube bounded by the planes \(x = 0, x = 1, y = 0, y = 1, z = 0, \) and \(z = 1 \)

2. \(\mathbf{F}(x, y, z) = x^2 \mathbf{i} + xy \mathbf{j} + z \mathbf{k} \),
 \(E \) is the solid bounded by the paraboloid \(z = 4 - x^2 - y^2 \) and the \(xy \)-plane

3. \(\mathbf{F}(x, y, z) = (z, y, x) \),
 \(E \) is the solid ball \(x^2 + y^2 + z^2 = 16 \)

4. \(\mathbf{F}(x, y, z) = (x^2, y^2, z) \),
 \(E \) is the solid cylinder \(y^2 + z^2 \leq 9, 0 \leq x \leq 2 \)

5-15 Use the Divergence Theorem to calculate the surface integral \(\iint_{S} \mathbf{F} \cdot d\mathbf{S} \), that is, calculate the flux of \(\mathbf{F} \) across \(S \).

5. \(\mathbf{F}(x, y, z) = xz^2 \mathbf{i} + yz^2 \mathbf{j} - ye^z \mathbf{k} \),
 \(S \) is the surface of the box bounded by the coordinate planes and the planes \(x = 3, y = 2, \) and \(z = 1 \)

6. \(\mathbf{F}(x, y, z) = x^2yz \mathbf{i} + xy^2z \mathbf{j} + yz^2 \mathbf{k} \),
 \(S \) is the surface of the box enclosed by the planes \(x = 0, x = a, y = 0, y = b, z = 0, \) and \(z = c \), where \(a, b, \) and \(c \) are positive numbers

7. \(\mathbf{F}(x, y, z) = 3xy^2 \mathbf{i} + xe^y \mathbf{j} + x^3 \mathbf{k} \),
 \(S \) is the surface of the solid bounded by the cylinder \(y^2 + z^2 = 1 \) and the planes \(x = -1 \) and \(x = 2 \)

8. \(\mathbf{F}(x, y, z) = (x^3 + y^3) \mathbf{i} + (y^3 + z^3) \mathbf{j} + (z^3 + x^3) \mathbf{k} \),
 \(S \) is the sphere with center the origin and radius 2

9. \(\mathbf{F}(x, y, z) = x^2 \sin y \mathbf{i} + x \cos y \mathbf{j} - z \sin y \mathbf{k} \),
 \(S \) is the “fat sphere” \(x^2 + y^2 + z^2 = 8 \)

10. \(\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + z \mathbf{k} \),
 \(S \) is the surface of the tetrahedron enclosed by the coordinate planes and the plane
 \[
 \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1
 \]
 where \(a, b, \) and \(c \) are positive numbers

11. \(\mathbf{F}(x, y, z) = (\cos z + xy^2) \mathbf{i} + xe^y \mathbf{j} + (\sin y + x^2z) \mathbf{k} \),
 \(S \) is the surface of the solid bounded by the paraboloid \(z = x^2 + y^2 \) and the plane \(z = 4 \)

12. \(\mathbf{F}(x, y, z) = x^2 \mathbf{i} - x^2 y^2 \mathbf{j} + 4xy^2z \mathbf{k} \),
 \(S \) is the surface of the solid bounded by the cylinder \(x^2 + y^2 = 1 \) and the planes \(z = x + 2 \) and \(z = 0 \)

13. \(\mathbf{F} = |r| \mathbf{r} \), where \(\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \),
 \(S \) consists of the hemisphere \(z = \sqrt{1 - x^2 - y^2} \) and the disk \(x^2 + y^2 \leq 1 \) in the \(xy \)-plane

CAS Computer algebra system required

1. Homework Hints available at stewartcalculus.com
14. \(\mathbf{F} = |r|^2 \mathbf{r} \), where \(r = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \),
 \(S \) is the sphere with radius \(R \) and center the origin.

15. \(\mathbf{F}(x, y, z) = e^z \tan z \mathbf{i} + y \sqrt{3} - x^2 \mathbf{j} + x \sin y \mathbf{k} \),
 \(S \) is the surface of the solid that lies above the \(xy \)-plane
 and below the surface \(z = 2 - x^2 - y^2 \), \(-1 \leq x \leq 1, -1 \leq y \leq 1 \).

16. Use a computer algebra system to plot the vector field
 \(\mathbf{F}(x, y, z) = \sin x \cos^3 y \mathbf{i} + \sin^3 y \cos z \mathbf{j} + \sin z \cos^2 x \mathbf{k} \)
 in the cube cut from the first octant by the planes \(x = \pi/2 \),
 \(y = \pi/2 \), and \(z = \pi/2 \). Then compute the flux across the
 surface of the cube.

17. Use the Divergence Theorem to evaluate \(\iint_S \mathbf{F} \cdot d\mathbf{S} \), where
 \(\mathbf{F}(x, y, z) = z^2 x \mathbf{i} + \left(\frac{1}{2} y^2 + \tan z \right) \mathbf{j} + (x^2 + y^2)^3 \mathbf{k} \)
 and \(S \) is the top half of the sphere \(x^2 + y^2 + z^2 = 1 \).
 \(\text{[Hint: Note that } S \text{ is not a closed surface. First compute}
 \text{integrals over } S_1 \text{ and } S_2, \text{ where } S_1 \text{ is the disk}
 \text{ } x^2 + y^2 < 1, \text{ oriented downward, and } S_2 = S \cup S_1.] \)

18. Let \(\mathbf{F}(x, y, z) = 2 \tan^{-1} (y^2) \mathbf{i} + z^2 \ln(x^2 + 1) \mathbf{j} + z \mathbf{k} \).
 Find the flux of \(\mathbf{F} \) across the part of the paraboloid
 \(x^2 + y^2 + z = 2 \) that lies above the plane \(z = 1 \) and is
 oriented upward.

19. A vector field \(\mathbf{F} \) is shown. Use the interpretation of divergence
derived in this section to determine whether \(\text{div } \mathbf{F} \)
 is positive or negative at \(P_1 \) and at \(P_2 \).

20. (a) Are the points \(P_1 \) and \(P_2 \) sources or sinks for the vector
 field \(\mathbf{F} \) shown in the figure? Give an explanation based
 solely on the picture.
 (b) Given that \(\mathbf{F}(x, y) = (x, y^2) \), use the definition of divergence
 to verify your answer to part (a).

21. \(\mathbf{F}(x, y) = (xy, x + y^2) \)
22. \(\mathbf{F}(x, y) = (x^2, y^3) \)

23. Verify that \(\text{div } \mathbf{E} = 0 \) for the electric field \(\mathbf{E}(x) = \frac{eQ}{|x|^3} \mathbf{x} \).

24. Use the Divergence Theorem to evaluate
 \(\iiint \int_S (2x + 2y + z^2) \,dS \)
 where \(S \) is the sphere \(x^2 + y^2 + z^2 = 1 \).

25–30 Prove each identity, assuming that \(S \) and \(E \) satisfy
 the conditions of the Divergence Theorem and the scalar functions
 and components of the vector fields have continuous second-
 order partial derivatives.

25. \(\iint_S \mathbf{a} \cdot \mathbf{n} \,dS = 0 \), where \(\mathbf{a} \) is a constant vector

26. \(\nabla \mathbf{E} = \frac{1}{r} \mathbf{F} \cdot d\mathbf{S} \), where \(\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \)

27. \(\iiint_S \mathbf{F} \cdot d\mathbf{S} = 0 \)
28. \(\iiint_S \mathbf{D} \cdot d\mathbf{S} = \iiint_E \nabla^2 \mathbf{f} \,dV \)

29. \(\iiint_S (f \nabla g) \cdot \mathbf{n} \,dS = \iiint_E (f \nabla^2 g + \nabla f \cdot \nabla g) \,dV \)
30. \(\iiint_S (f \nabla g - g \nabla f) \cdot \mathbf{n} \,dS = \iiint_E (f \nabla^2 g - g \nabla^2 f) \,dV \)

31. Suppose \(S \) and \(E \) satisfy the conditions of the Divergence
 Theorem and \(f \) is a scalar function with continuous partial
 derivatives. Prove that

 \[\iint_S f \mathbf{n} \,dS = \iiint_E \nabla f \,dV \]

 These surface and triple integrals of vector functions are
 vectors defined by integrating each component function.
 \(\text{[Hint: Start by applying the Divergence Theorem to } \mathbf{F} = cf, \)
 where \(c \) is an arbitrary constant vector. \]

32. A solid occupies a region \(E \) with surface \(S \) and is immersed
 in a liquid with constant density \(\rho \). We set up a coordinate
 system so that the \(xy \)-plane coincides with the surface of
 the liquid, and positive values of \(z \) are measured downward
 into the liquid. Then the pressure at depth \(z \) is \(p = \rho g z \),
 where \(g \) is the acceleration due to gravity (see Section 8.3). The total
 buoyant force on the solid due to the pressure distribution is
given by the surface integral

 \[\mathbf{F} = -\iint_S \rho \mathbf{n} \,dS \]

 where \(\mathbf{n} \) is the outer unit normal. Use the result of Exercise 31 to show
 that \(\mathbf{F} = -W \mathbf{k} \), where \(W \) is the weight of
 the liquid displaced by the solid. (Note that \(\mathbf{F} \) is directed
 upward because \(z \) is directed downward.) The result is
 Archimedes' Principle: The buoyant force on an object
 equals the weight of the displaced liquid.