Exercises

Determine whether the points \(P \) and \(Q \) lie on the given surface.

\(\mathbf{r}(u, v) = (2u + 3v, 1 + 5u - v, 2 + u + v) \)
\(P(7, 10, 4), \ Q(5, 22, 5) \)

\(\mathbf{r}(u, v) = (u + v, u^2 - v, u + v^2) \)
\(P(3, -1, 5), \ Q(-1, 3, 4) \)

3–6 Identify the surface with the given vector equation.

3. \(\mathbf{r}(u, v) = (u + v) \mathbf{i} + (3 - v) \mathbf{j} + (1 + 4u + 5v) \mathbf{k} \)
4. \(\mathbf{r}(u, v) = 2 \sin u \mathbf{i} + 3 \cos u \mathbf{j} + v \mathbf{k}, \quad 0 \leq v \leq 2 \)
5. \(\mathbf{r}(s, t) = (s, t, t^2 - s^3) \)
6. \(\mathbf{r}(x, y) = (x \sin 2t, s^2, s \cos 2t) \)

7–12 Use a computer to graph the parametric surface. Get a printout and indicate on it which grid curves have \(u \) constant and which have \(v \) constant.

7. \(\mathbf{r}(u, v) = \langle u^2, v^3, u + v \rangle, \quad -1 \leq u \leq 1, -1 \leq v \leq 1 \)
8. \(\mathbf{r}(u, v) = \langle u, v^3, -v \rangle, \quad -2 \leq u \leq 2, -2 \leq v \leq 2 \)
9. \(\mathbf{r}(u, v) = \langle u \cos v, u \sin v, u^2 \rangle, \quad -1 \leq u \leq 1, 0 \leq v \leq 2\pi \)
10. \(\mathbf{r}(u, v) = \langle u, \sin(u + v), \sin v \rangle, \quad -\pi \leq u \leq \pi, -\pi \leq v \leq \pi \)
11. \(x = \sin v, \quad y = \cos u \sin 4v, \quad z = \sin 2u \sin 4v, \quad 0 \leq u \leq 2\pi, -\pi/2 \leq v \leq \pi/2 \)
12. \(x = \sin u, \quad y = \cos u \sin v, \quad z = \sin v, \quad 0 \leq u \leq 2\pi, 0 \leq v \leq 2\pi \)

13–18 Match the equations with the graphs labeled I–VI and give reasons for your answers. Determine which families of grid curves have \(u \) constant and which have \(v \) constant.

13. \(\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k} \)
14. \(\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, \quad -\pi \leq u \leq \pi \)
15. \(\mathbf{r}(u, v) = \sin v \mathbf{i} + \cos u \sin 2v \mathbf{j} + \sin u \sin 2v \mathbf{k} \)
16. \(x = (1 - u)(3 + \cos v) \cos 4\pi u, \quad y = (1 - u)(3 + \cos v) \sin 4\pi u, \quad z = 3u + (1 - u) \sin v \)
17. \(x = \cos^3 u \cos^3 v, \quad y = \sin^3 u \cos^3 v, \quad z = \sin^3 v \)
18. \(x = (1 - |u|) \cos v, \quad y = (1 - |u|) \sin v, \quad z = u \)

Graphing calculator or computer required

19–26 Find a parametric representation for the surface.

19. The plane through the origin that contains the vectors \(\mathbf{i} - \mathbf{j} \) and \(\mathbf{j} - \mathbf{k} \)
20. The plane that passes through the point \((0, -1, 5)\) and contains the vectors \(\langle 2, 1, 4 \rangle\) and \(\langle -3, 2, 5 \rangle\)
21. The part of the hyperboloid \(4z^2 - 4y^2 - z^2 = 4\) that lies in front of the \(yz\)-plane
22. The part of the ellipsoid \(x^2 + 2y^2 + 3z^2 = 1\) that lies to the left of the \(xz\)-plane
23. The part of the sphere \(x^2 + y^2 + z^2 = 4\) that lies above the cone \(z = \sqrt{x^2 + y^2}\)
24. The part of the sphere \(x^2 + y^2 + z^2 = 16\) that lies between the planes \(z = -2\) and \(z = 2\)
25. The part of the cylinder \(y^2 + z^2 = 16\) that lies between the planes \(x = 0\) and \(x = 5\)

1. Homework Hints available at stewartcalculus.com
26. The part of the plane $z = x + 3$ that lies inside the cylinder $x^2 + y^2 = 1$

27-28 Use a computer algebra system to produce a graph that looks like the given one.

29. Find parametric equations for the surface obtained by rotating the curve $y = e^{-x}$, $0 \leq x \leq 3$, about the x-axis and use them to graph the surface.

30. Find parametric equations for the surface obtained by rotating the curve $x = 4y^2 - y^4$, $-2 \leq y \leq 2$, about the y-axis and use them to graph the surface.

31. (a) What happens to the spiral tube in Example 2 (see Figure 5) if we replace $\cos u$ by $\sin u$ and $\sin u$ by $\cos u$? (b) What happens if we replace $\cos u$ by $2\cos u$ and $\sin u$ by $\sin 2u$?

32. The surface with parametric equations

$$
\begin{align*}
x &= 2\cos \theta + r \cos(\theta/2) \\
y &= 2\sin \theta + r \cos(\theta/2) \\
z &= r \sin(\theta/2)
\end{align*}
$$

where $-\frac{1}{2} \leq r \leq \frac{1}{2}$ and $0 \leq \theta \leq 2\pi$, is called a Möbius strip. Graph this surface with several viewpoints. What is unusual about it?

33-36 Find an equation of the tangent plane to the given parametric surface at the specified point.

33. $x = u + v, \quad y = 3u^2, \quad z = u - v; \quad (2, 3, 0)$

34. $x = u^2 + 1, \quad y = v^3 + 1, \quad z = u + v; \quad (5, 2, 3)$

35. $r(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}; \quad u = 1, \quad v = \pi/3$

36. $r(u, v) = \sin u \mathbf{i} + \cos u \mathbf{j} + \sin v \mathbf{k}; \quad u = \pi/6, \quad v = \pi/6$

37-38 Find an equation of the tangent plane to the given parametric surface at the specified point. Graph the surface and the tangent plane.

37. $r(u, v) = u^2 \mathbf{i} + 2u \sin v \mathbf{j} + u \cos v \mathbf{k}; \quad u = 1, \quad v = 0$

38. $r(u, v) = (1 - u^2 - v^2) \mathbf{i} - v \mathbf{j} - u \mathbf{k}; \quad (-1, -1, -1)$

39-50 Find the area of the surface.

39. The part of the plane $3x + 2y + z = 6$ that lies in the first octant

40. The part of the plane with vector equation $r(u, v) = (u + v, 2 - 3u, 1 + u - v)$ that is given by $0 \leq u \leq 2, -1 \leq v \leq 1$

41. The part of the plane $x + 2y + 3z = 1$ that lies inside the cylinder $x^2 + y^2 = 3$

42. The part of the cone $z = \sqrt{x^2 + y^2}$ that lies between the plane $y = x$ and the cylinder $y^2 = x^2$

43. The surface $z = \frac{1}{2}(x^{3/2} + y^{1/2}), 0 \leq x \leq 1, 0 \leq y \leq 1$

44. The part of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices $(0, 0), (0, 1), \text{and} (2, 1)$

45. The part of the surface $z = xy$ that lies within the cylinder $x^2 + y^2 = 1$

46. The part of the paraboloid $x = y^2 + z^2$ that lies inside the cylinder $y^2 + z^2 = 9$

47. The part of the surface $y = 4x + z^2$ that lies between the planes $x = 0, x = 1, z = 0,$ and $z = 1$

48. The helicoid (or spiral ramp) with vector equation $r(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, 0 \leq u \leq 1, 0 \leq v \leq \pi$

49. The surface with parametric equations $x = u^2, y = uv, z = \frac{1}{2}v^2, 0 \leq u \leq 1, 0 \leq v \leq 2$

50. The part of the sphere $x^2 + y^2 + z^2 = b^2$ that lies inside the cylinder $x^2 + y^2 = a^2$, where $0 < a < b$

51. If the equation of a surface S is $z = f(x, y)$, where $x^2 + y^2 \leq R^2$, and you know that $|f_x| \leq 1$ and $|f_y| \leq 1$, what can you say about $A(S)$?

52-53 Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral.

52. The part of the surface $z = \cos(x^2 + y^2)$ that lies inside the cylinder $x^2 + y^2 = 1$

53. The part of the surface $z = e^{-x^2-y^2}$ that lies above the disk $x^2 + y^2 \leq 4$

54. Find, to four decimal places, the area of the part of the surface $z = (1 + x^2)/(1 + y^2)$ that lies above the square $|x| + |y| \leq 1$. Illustrate by graphing this part of the surface.

55. (a) Use the Midpoint Rule for double integrals (see Section 15.1) with six squares to estimate the area of the surface $z = 1/(1 + x^2 + y^2)$, $0 \leq x \leq 6, 0 \leq y \leq 4$.