1. The figure shows a curve \(C \) given by a vector function \(\mathbf{r}(t) \).
 (a) Draw the vectors \(\mathbf{r}(4.5) - \mathbf{r}(4) \) and \(\mathbf{r}(4.2) - \mathbf{r}(4) \).
 (b) Draw the vectors \(\mathbf{r}(4.5) - \mathbf{r}(4) \) and \(\mathbf{r}(4.2) - \mathbf{r}(4) \) given by
 \[
 \begin{align*}
 \frac{\mathbf{r}(4.5) - \mathbf{r}(4)}{0.5} \quad \text{and} \quad \frac{\mathbf{r}(4.2) - \mathbf{r}(4)}{0.2}.
 \end{align*}
 \]
 (c) Write expressions for \(\mathbf{r}'(4) \) and the unit tangent vector \(\mathbf{T}(4) \).
 (d) Draw the vector \(\mathbf{T}(4) \).

2. (a) Make a large sketch of the curve described by the vector function \(\mathbf{r}(t) = (t^2, t^3) \), \(0 \leq t \leq 2 \), and draw the vectors \(\mathbf{r}(1) \), \(\mathbf{r}(1.1) \), and \(\mathbf{r}(1.1) - \mathbf{r}(1) \).
 (b) Draw the vector \(\mathbf{r}'(1) \) starting at \((1, 1) \), and compare it with the vector
 \[
 \frac{\mathbf{r}(1.1) - \mathbf{r}(1)}{0.1}.
 \]
 Explain why these vectors are so close to each other in length and direction.

3. Sketch the plane curve with the given vector equation.
 (b) Find \(\mathbf{r}'(t) \).
 (c) Sketch the position vector \(\mathbf{r}(t) \) and the tangent vector \(\mathbf{r}'(t) \) for the given value of \(t \).

4. \(\mathbf{r}(t) = (t - 2, t^2 + 1), \quad t \in \mathbb{R} \)
5. \(\mathbf{r}(t) = (t^2, t^3), \quad t = 1 \)
6. \(\mathbf{r}(t) = \sin t \mathbf{i} + 2 \cos t \mathbf{j}, \quad t = \pi/2 \)
7. \(\mathbf{r}(t) = e^t \mathbf{i} + e^t \mathbf{j}, \quad t = 0 \)
8. \(\mathbf{r}(t) = (1 + \cos t) \mathbf{i} + (2 + \sin t) \mathbf{j}, \quad t = \pi/2 \)

9. Find the derivative of the vector function.
 (a) \(\mathbf{r}(t) = (t \sin t, t^2, t \cos 2t) \)
 (b) \(\mathbf{r}(t) = (\tan t, \sec t, 1/t^2) \)
 (c) \(\mathbf{r}(t) = t \mathbf{i} + t \mathbf{j} + 2 \sqrt{t} \mathbf{k} \)
 (d) \(\mathbf{r}(t) = \frac{1}{1 + t} \mathbf{i} + \frac{t}{1 + t} \mathbf{j} + \frac{t^2}{1 + t} \mathbf{k} \)

10. Find the unit tangent vector \(\mathbf{T}(t) \) at the point with the given value of the parameter \(t \).
 17. \(\mathbf{r}(t) = (te^t, 2 \arctan t, 2e^t), \quad t \in \mathbb{R} \)
 18. \(\mathbf{r}(t) = (t^2 + 3t, t^2 + 1, 3t + 4), \quad t = 1 \)
 19. \(\mathbf{r}(t) = \cos t \mathbf{i} + 3t \mathbf{j} + 2 \sin 2t \mathbf{k}, \quad t = 0 \)
 20. \(\mathbf{r}(t) = \sin t \mathbf{i} + \cos t \mathbf{j} + \tan^2 t \mathbf{k}, \quad t = \pi/4 \)

21. If \(\mathbf{r}(t) = (t, t^2, t^3) \), find \(\mathbf{r}'(t), \mathbf{T}(1), \mathbf{r}''(t), \mathbf{r}'(t) \times \mathbf{r}''(t) \).
22. If \(\mathbf{r}(t) = (e^t, e^{-t}, te^t) \), find \(\mathbf{T}(0), \mathbf{r}'(0), \mathbf{r}'(t) \times \mathbf{r}'(t) \).

23. Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
 23. \(x = 1 + 2t, \quad y = 3 - t, \quad z = 5 + t; \quad (3, 0, 2) \)
 24. \(x = e^{-t}, \quad y = te^{-t}, \quad z = te^{-t}; \quad (1, 0, 0) \)
 25. \(x = e^{-t} \cos t, \quad y = e^{-t} \sin t, \quad z = e^{-t}; \quad (1, 0, 1) \)
 26. \(x = t^2 + 3, \quad y = \ln (t^2 + 3), \quad z = t; \quad (2, 4, 1) \)

27. Find a vector function for the tangent line to the curve of intersection of the cylinders \(x^2 + y^2 = 25 \) and \(x^2 + z^2 = 20 \) at the point \((3, 4, 2) \).
28. Find the point on the curve \(\mathbf{r}(t) = (2 \cos t, 2 \sin t, e^t), \quad 0 \leq t \leq \pi \) where the tangent line is parallel to the plane \(3x + y = 1 \).

29. Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. Illustrate by graphing both the curve and the tangent line on a common screen.
 29. \(x = t, \quad y = e^{-t}, \quad z = 2t - t^3; \quad (0, 1, 0) \)
 30. \(x = 2 \cos t, \quad y = 2 \sin t, \quad z = 4 \cos 2t; \quad (\sqrt{3}, 1, 2) \)
 31. \(x = t \cos t, \quad y = t, \quad z = t \sin t; \quad (0, \pi, 0) \)

32. (a) Find the point of intersection of the tangent lines to the curve \(r(t) = (\sin t, 2 \sin t, \cos t) \) at the points where \(t = 0 \) and \(t = 0.5 \).
 (b) Illustrate by graphing the curve and both tangent lines.
33. The curves \(r_1(t) = (t, t^2, t^3) \) and \(r_2(t) = (\sin t, \sin 2t, t) \) intersect at the origin. Find their angle of intersection correct to the nearest degree.
34. At what point do the curves \(r(t) = (t, 1 - t, 3 + t^2) \) and \(r(s) = (3 - s, s - 2, s^2) \) intersect? Find their angle of intersection correct to the nearest degree.

35–40 Evaluate the integral.

35. \(\int_0^1 (t^2 - t^3) \mathbf{j} + 3t^2 \mathbf{k} \, dt \)

36. \(\int_0^1 \left(\frac{4}{1 + t^2} \mathbf{j} + \frac{2t}{1 + t^2} \mathbf{k} \right) \, dt \)

37. \(\int_0^{\pi/2} (3 \sin^2 t \cos t \mathbf{i} + 3 \sin t \cos^2 t \mathbf{j} + 2 \sin t \cos t \mathbf{k}) \, dt \)

38. \(\int_0^1 (t^2 \mathbf{i} + t \sqrt{3 - 1} \mathbf{j} + t \sin \pi t \mathbf{k}) \, dt \)

39. \(\int_0^1 (\sec^2 t \mathbf{i} + t(t^2 + 1) \mathbf{j} + t \ln t \mathbf{k}) \, dt \)

40. \(\int_0^1 \left(e^{2t} \mathbf{i} + \frac{t}{1 - t} \mathbf{j} + \frac{1}{\sqrt{1 - t^2}} \mathbf{k} \right) \, dt \)

41. Find \(r(t) \) if \(r'(t) = 2t \mathbf{i} + 3t^2 \mathbf{j} + \sqrt{t} \mathbf{k} \) and \(r(1) = \mathbf{i} + \mathbf{j} \).

42. Find \(r(t) \) if \(r'(t) = t \mathbf{i} + e^t \mathbf{j} + t e^t \mathbf{k} \) and \(r(0) = \mathbf{i} + \mathbf{j} + \mathbf{k} \).

43. Prove Formula 1 of Theorem 3.

44. Prove Formula 3 of Theorem 3.

45. Prove Formula 5 of Theorem 3.

46. Prove Formula 6 of Theorem 3.

47. If \(u(t) = (t, \cos t, \sin t) \) and \(v(t) = (t, \cos t, \sin t) \), use Formula 4 of Theorem 3 to find

\[\frac{d}{dt} [u(t) \cdot v(t)] \]

48. If \(u \) and \(v \) are the vector functions in Exercise 47, use Formula 5 of Theorem 3 to find

\[\frac{d}{dt} [u(t) \times v(t)] \]

49. Find \(f''(2) \), where \(f(t) = u(t) \cdot v(t) \), \(u(2) = (1, 2, -1) \), \(u'(2) = (3, 0, 4) \), and \(v(t) = (t, t', t'^2) \).

50. If \(r(t) = u(t) \times v(t) \), where \(u \) and \(v \) are the vector functions in Exercise 49, find \(r''(2) \).

51. Show that if \(r \) is a vector function such that \(r'' \) exists, there is

\[\frac{d}{dt} [r(t) \times r'(t)] = r(t) \times r''(t) \]

52. Find an expression for \(\frac{d}{dt} [u(t) \cdot (v(t) \times w(t))] \).

53. If \(r(t) \neq 0 \), show that

\[\frac{d}{dt} |r(t)| = \frac{1}{|r(t)|} \cdot r(t) \cdot r'(t). \]

[Hint: \(|r(t)|^2 = r(t) \cdot r(t)\)]

54. If a curve has the property that the position vector \(r(t) \) is always perpendicular to the tangent vector \(r'(t) \), show that the curve lies on a sphere with center the origin.

55. If \(u(t) = r(t) \cdot [r'(t) \times r''(t)] \), show that

\[u'(t) = r(t) \cdot [r'(t) \times r'''(t)] \]

56. Show that the tangent vector to a curve defined by a vector function \(r(t) \) points in the direction of increasing \(t \). [Hint: Refer to Figure 1 and consider the cases \(h > 0 \) and \(h < 0 \) separately.]

13.3 Arc Length and Curvature

In Section 10.2 we defined the length of a plane curve with parametric equations \(x = f(t) \), \(y = g(t) \), \(a \leq t \leq b \), as the limit of lengths of inscribed polygons and, for the case where \(f' \) and \(g' \) are continuous, we arrived at the formula

\[L = \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2} \, dt = \int_a^b \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt \]

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose that the curve has the vector equation \(r(t) = (f(t), g(t), h(t)) \), \(a \leq t \leq b \), or, equivalently, the parametric equations \(x = f(t), y = g(t), z = h(t) \), where \(f', g', \) and \(h' \) are continuous. If the curve is traversed exactly once as \(t \) increases from \(a \) to \(b \), then it can be shown that its length is

\[L = \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2} \, dt \]

\[= \int_a^b \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2} \, dt \]