A Quick Revision

<table>
<thead>
<tr>
<th>Task</th>
<th>Local</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steps</td>
<td>Analyse critical points</td>
<td>Find absolute max/min over a region.</td>
</tr>
</tbody>
</table>

1. Find the critical points by solving
 \[\nabla f = 0, \text{ i.e.} \]
 \[\left\{ \begin{array}{l}
 f_x(a,b) = 0 \\
 f_y(a,b) = 0
 \end{array} \right. \]

2. Find \(f_{xx}, f_{xy} \), and compute
 \[D(x,y) = \det(Hf(x,y)) \]
 \[= f_{xx}f_{yy} - f_{xy}^2 \]

3. \[\left\{ \begin{array}{l}
 D > 0, \ f_{xx} > 0 \Rightarrow \text{loc. min} \\
 D > 0, \ f_{xx} < 0 \Rightarrow \text{loc. max} \\
 D < 0 \Rightarrow \text{saddle pt.} \\
 D = 0 \Rightarrow \text{inconclusive}
 \end{array} \right. \]

1. The same as \(\leq \), + recording values at critical points, in a table.
2. Find max/min on the boundary.

Option 1: Eliminating \(x \) or \(y \) \(\Rightarrow \) Optimisation w.r.t. to a single variable.

Option 2: Lagrange multiplier method.

Record the max/min on the boundary.
3. Compare the recorded values at critical points and on the boundary.
Comparison between options to find max/min on the boundary.

<table>
<thead>
<tr>
<th>Elimination of x or y</th>
<th>Lagrange multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundaries that cannot be expressed as given by a single equation, e.g. rectangular/triangular boundary</td>
<td>✓</td>
</tr>
<tr>
<td>Analyse each part of the boundary separately</td>
<td></td>
</tr>
<tr>
<td>Boundaries expressible by a single equation, e.g. circular/elliptical/elliptical/unfamiliar equation like $x^2 + xy + y^2 = 2$</td>
<td>×</td>
</tr>
<tr>
<td>It could be done, but considerably hard.</td>
<td></td>
</tr>
</tbody>
</table>
Q1: A car moves at a uniform speed of 50 km/h, from 12 pm to 4 pm. How far has the car travelled?

Solution: Distance = 50 \times 4 = 200 \text{ km}

Area of rectangle

\begin{align*}
&= 50 \times 4 = 200 \\
\Rightarrow & \text{Area of rectangle} \\
&= \text{Distance the car has travelled}.
\end{align*}

Q2: A car starts with constant acceleration 0.5 m/s\(^2\). How far has the car travelled from t = 0 to t = 10 s?
Sol: Acceleration = the slope of the line that describes the relation between velocity and time.

The distance the car has travelled

= Area of the triangle
= Area between the graph of \(v = 5t \), the straight lines \(t=10 \) and \(t=0 \).

\[
\frac{1}{2} \times 10 \times (5 \times 10) = 250 \text{ m}.
\]

Q3. A car moves on a straight road with velocity described by the equation \(v = t^2 \) from 0 to 10 s. How far has the car travelled?
Sol: By our observation before,

distance = the area between the straight lines

t = 0, t = 10

and the graph of \(v = t^2 \).

Historically, this was exactly why Newton and Leibniz invented calculus.
(Actually, integration preceded differentiation!)

Attempts to find the area above:

Approximating:
"pretend" the car is move at 10m/s constant rate.

Rectangular area

\[= 100 \times 10 = 1000. \]

Triangular area

\[= \frac{1}{2} \times 10 \times 100 = 500. \]

Rectangular area

\[= 5 \times 5^2 + 5 \times 10^2 = 625. \]

Triangular area (Trapezoidal)

\[= 375. \]
Rectangular area

\[= 2 \times 2^2 + 2 \times 4^2 + 2 \times 6^2 + 2 \times 8^2 + 2 \times 10^2 \]

\[= 440 \]

Trapezoidal area = 340