Lecture 3

Business problem (see section webpage after)

a) \[q(p) = ap + b \]

\[q(200) = 5000 \]

\[\text{Slope} = \frac{\text{rise}}{\text{run}} = \frac{-50}{1} = -50 \]
Here: \(a = -50 \),

So: \(q(p) = -50p + b \)

Plug in: \(q(200) = -50 \cdot 200 + b \)

\[= 5000 \]

\[b = 5000 \]

\(q(p) = -50p + 15000 \) (*)

b) \(C = C_{\text{fixed}} + C_{\text{variable}} \)

\[= 100000 + C_{\text{variable}} \]

\(C(q) = 100000 + 75q \)
(c) \(R = pq \)

Want \(R = R(q) \)

So: find \(p \) in terms of \(q \),

use (*):

\[
q = -50p + 15000
\]

\[
50p = 15000 - q
\]

\[
p = 300 - \frac{1}{50}q
\]

So \(R = p \cdot q = (300 - \frac{1}{50}q) \cdot q \)

\[
= -\frac{1}{50} q^2 + 300q
\]
e) \(C(q) = 100000 + 75q \)

\[
\begin{align*}
& \text{(note: } q = 15000 \Rightarrow 300 - \frac{1}{50} q = 0 \Rightarrow R = 0) \\
\text{Two points of intersection} \\
\Rightarrow \text{two break even points.}
\end{align*}
\]

d) Solve \(C(q) = R(q) \):

\[
100000 + 75q = -\frac{1}{50}q^2 + 300q
\]
So: \(\frac{1}{50} q^2 - 225q + 100000 = 0 \)

Solve this quadratic for \(q \):

\[q \approx 463, 10800 \]

4) \(P(q) = R(q) - C(q) \)

\[-\frac{1}{50} q^2 + 300q \]

\[-(75q + 100000)\]

\[-\frac{1}{50} q^2 + 225q - 100000\]
h) \[P(q) = -\frac{1}{50} q^2 + 225q - 10000 \]

Profit maximized

Corresponds to: \((q_1, P(q_1)) \) is vertex of parabola.
1) Midpoint of break even points

2) Complete the Square

\[-\frac{1}{50} a^2 + 225a - 100000 \]

\[= -\frac{1}{50} \left(a^2 - 11250a \right) - 100000 \]

\[= -\frac{1}{50} \left(\left(a - 5625 \right)^2 - 5625^2 \right) - 100000 \]

\[\left(x + y \right)^2 = x^2 + 2xy + y^2 \]

So: \[a = 5625 \]
\[P(q) = - \frac{1}{50} q^2 + 225q = 100000 \]

\[P'(q) = - \frac{2}{50} q + 225 = 0 \]

\[q = 56.25 \]

Calculus solution.
Introduction to limits

Take a ball, drop from 100 m: $s(t) = 100 - 5t^2$ (approx.)

position after t seconds

$t = 0: s(0) = 100$
$t = 1: s(1) = 95$
$t = 2: s(2) = 80$
$t = 3: s(3) = 55$
Average velocity:

\[V_{\text{avg}} (t=1, t=2) = \frac{s(2) - s(1)}{2 - 1} \]

\[(\text{distance} \over \text{time}) \]

\[= \frac{80 - 95}{2 - 1} = -15 \text{ (m/s)} \]

For any two times, this will find average velocity.
Instantaneous Velocity

\[s \]

\[\Delta t \]

\[V_{\text{avg}}(t=1, t=1+\Delta t) = -15 \]

Want \(v(t) \): approximate via

\[V_{\text{avg}}(t=1, t=1+\Delta t) \]

Take small \(\Delta t \)!