Lecture 1

(Chapter 1.3 in text)

Exponential functions

Start with 1, double every year

<table>
<thead>
<tr>
<th>Year</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>
How much money do we have after \(n \) years?

\[a \rightarrow a^n \] amount of money

This is an exponential function.

Def: \(f(x) = b^x \), \(b > 0 \)

is called an exponential function.
Graph:

\[f(x) \]

\[f(x) = 2 \times x \]

Example:

\[g(x) = \left(\frac{1}{2}\right)^x \]
\[f(x) = \left(\frac{1}{2} \right)^x \]

<table>
<thead>
<tr>
<th>[x]</th>
<th>[\frac{1}{2}]</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{1}{4}]</td>
<td>[-\frac{1}{2}]</td>
<td>[2]</td>
</tr>
<tr>
<td>[\frac{1}{8}]</td>
<td>[-\frac{3}{4}]</td>
<td>[3]</td>
</tr>
<tr>
<td>[\frac{1}{16}]</td>
<td>[-1]</td>
<td>[4]</td>
</tr>
</tbody>
</table>

Properties:

1) \(f(x) \) is defined for all real \(x \).

2) \(f(0) = 1 \)

3) Increasing if \(b > 1 \), decreasing if \(b < 1 \)
Rules:
- \(b \times b^y = b^{x+y} \)
- \(b^0 = 1 \)
- \(\frac{b^x}{b^y} = b^{x-y} \)
- \((b^x)^y = b^{x \cdot y} \)

Example:
- \(2^2 \cdot 2^3 = 2^5 \)

\((4 \cdot 8 = 32)\)

- \(3^2 \cdot 4 = 9 \cdot 4 = 36 \)

- \((3^2)^4 = 3^8 \)

- \((2^{-1})^3 = 2^{-3} \)
- \((\frac{1}{2})^3 = \frac{1}{8} \)
Natural Exponential

\[f(x) = e^x \]
\[e \approx 2.718 \ldots \]
Euler's number

This appears everywhere in calculus.

Inverse Functions

Ex: Say we doubled $1 \times x$ times and got $\$512$, how often did we double?

i.e. \[2^x = 512 \]
Or: \(f(x) = 2^x \)

Then we want \(f(x) = 512 \)

If we have a function \(f^{-1}(x) \) ("inverse function")

such that \(f^{-1}(f(x)) = x \).

So: \(f^{-1}(f(x)) = x = f^{-1}(512) \),

(Aside: \(f^{-1}(x) = \log_2 x \))
One-to-one functions

\(f(x) \): one \(x \) such that
\[f(x) = 1 \]

\(g(x) \): three different \(x \) such that
\[g(x) = 1 \]
Here:

- \(f(x) \) is one-to-one
- \(g(x) \) is not one-to-one

Def: A function is called one-to-one if every horizontal line intersects its graph at most once.
Inverse functions and one-to-one:

Fact: Let \(f(x) \) be one-to-one, then it has a (unique) inverse function \(f^{-1}(x) \) satisfying \(f^{-1}(f(x)) = x \).

Ex: \[x^2 = 9 \]
\[x = \pm 3 \]
\[= \pm \sqrt{9} \]
If we restrict to $x \geq 0$:

\[f(x) = x^2, \quad x \geq 0 \]

\[f^{-1}(x) = \sqrt{x} \]

Def: $f(x)$ is one-to-one on an interval $[a, b]$ if its graph restricted to $[a, b]$ is one-to-one.

$[a, b]$:

\[a \quad \text{---------} \quad b \]
Ex: \(f(x) = x^2 \)

- on \(\mathbb{C} \cup (\infty) \):
 \(x^2 \) is one-to-one

- on \((-\infty, 0] \):
 \(x^2 \) is one-to-one

Ex: \(f(x) = \sin(x) \)

This is one-to-one on \([-\frac{\pi}{2}, \frac{\pi}{2}] \).