Lecture 9

Recall:

Max/min of a function
\[f(x,y) \]
subject to \[g(x,y) = 0 \].

Then: solve

\[\begin{align*}
 g(x,y) &= 0 \\
 \nabla f(x,y) &= \lambda \nabla g(x,y)
\end{align*} \]

Ex: \[f(x,y) = 2x^2 + y^2 + 2 \]

\[g(x,y) = x^2 + 4y^2 - 4 \]

\[g = 0: \]

\[\begin{array}{c}
 -2 \\
 -1 \\
 1 \\
 2
\end{array} \]
\[\nabla g = \langle 2x, 8y \rangle \]
\[\nabla f = \langle 4x, 2y \rangle \]

get:

\[\begin{cases} x^2 + 4y^2 - 4 = 0 & \text{(1)} \\ 24x = 2x \lambda & \text{(2)} \\ 2y = 8y \lambda & \text{(3)} \end{cases} \]

(2): \[0 = x(2\lambda - 4) \]

Case 1: \[x = 0 \]
Case 2: \[\lambda = 2 \]

For 1: \[x = 0 \] \[\begin{cases} 4y^2 = 4 & \text{(1)} \\ y = \pm 1 \end{cases} \]

(3): \[z = 8x \] \[\lambda = \frac{1}{4} \]
get 2 solutions from case 1:

\[x = 0, \ y = \pm 1, \ x = \frac{1}{4} \]

Case 2: \(x = 2 \)

(3): \(2y = 8 \cdot 2 \)

\[2y = 16y \]

\[\Rightarrow y = 0 \]

(1): \(x^2 = 4, \ x = \pm 2 \)

2 more solutions:

\[x = \pm 2, \ y = 0, \ y = 2 \]
Now compute f at each of those:

$f(0, \pm 1) = 2 \cdot 0 + 1 + 2 = 3$

$f(\pm 2, 0) = 2 \cdot (2)^2 + 0 + 2 = 10$

Conclusion: 3 is the min of f, 10 is the max of f.

Subject to $g(x_1, y) = 0$.
Note: Lagrange multiplier method will find associate max (min of f on $g(x,y) = 0$.

Why should this work? (Not examine)

Level curves of f should be parallel to $g(x,y) = 0$ at max or min.
So then: \(\nabla f \perp \text{level curve of } f \)
\(\nabla g \perp g(x,y) = 0 \)

Now: \(\nabla f \parallel \nabla g \) is the same as level curve of \(f \) being parallel to \(g(x,y) = 0 \) at some point.

\[\int \nabla f \cdot (x,y) = \iint \nabla g(x,y) \]
\[\Rightarrow g(x,y) = 0 \]
Ex (2012 Final)

The demand curve for some quantity satisfies

\[p^2 + 4q^2 = 800 \]

where \(p \) is price, \(q \) quantity sold (per day).

What is the maximum revenue?

Use Lagrange multipliers!

price: price per unit of some good

quantity: number of goods sold

revenue: \(R \) total amount taken in
\[R = p \cdot q \]

Solution:
\[f(p, q) = p \cdot q \]
\[g(p, q) = p^2 + 4q^2 - 800 \]

Lagrangian Multipliers:

\[\begin{cases} p^2 + 4q^2 - 800 = 0 \\ \langle q, p \rangle = \lambda < q, p > \end{cases} \]
\[\begin{cases} \lambda q = 2p \\ \lambda p = 8q \end{cases} \]

We can try \(\frac{(2)}{(3)} \):
\[
\frac{q}{p} = \frac{x}{z} \frac{2q}{8q}
\]

Can \(p = 0 \), \(x = 0 \), \(q = 0 \)?

\(p = 0 \): \((2)\): \(q = \frac{y}{2p} \)
\(q = 0 \)

But then \((1)\) cannot be true,

\(x = 0 \): not possible

\(q = 0 \): not possible

So:
\[
\frac{q}{p} = \frac{2q}{8q}
\]

\[
8q^2 = 2p^2
\]

\[
p^2 = 4q^2
\]
\[4q^2 + 4q^2 = 800 \]
\[q^2 = 100 \]
\[q = \pm 10 \]
\[q = 10 \] as \(q > 0 \)

(should produce positive number of goods)

\[p^2 = 800 - 4q^2 \]
\[= 400 \]

So: \(p = \pm 20 \)
\[p = 20 \] (as \(p > 0 \))

Can check \(x \):
\[x = \frac{q}{2p} = \frac{10}{40} = \frac{1}{4} \]
So: \(p = 20, q = 10 \) is our solution,

\[R = 1 \cdot q = 20 \cdot 10 = 200 \]

Utility functions

\(l \): leisure time
\(g \): amount of consumable goods

\[U = U(l, g) \]

IDEA: Want to maximize \(U \)
subject to a constraint on \(l, g \).
1) U increases if l or g increase.

2) l, g are inversely related:

- $l \uparrow$, $g \downarrow$
- $l \downarrow$, $g \uparrow$

Ex: $U = f(l, g) = e^{\frac{l}{3}} g^{\frac{2}{3}}$

Subject to a constraint

$h(l, g) = 3l + 2g - 12 = 0$

What should l, g be to maximize U?
\[3 \ell + 2 g - 12 = 0 \]
\[\nabla f = \lambda \nabla h \]
\[\nabla f = \begin{pmatrix} -\frac{2}{3} \ell \frac{2}{3} \frac{2}{3} e^{\frac{1}{3}} g^{\frac{1}{3}} \end{pmatrix} \]
\[\nabla h = \begin{pmatrix} 3 & 1 & 2 \end{pmatrix} \]
\[\begin{align*}
3 \ell &+ 2 g - 12 = 0 \\
\frac{1}{3} e^{-\frac{2}{3}} g^{\frac{2}{3}} &= \lambda \cdot 3 \\
\frac{2}{3} e^{\frac{1}{3}} g^{\frac{1}{3}} &= \lambda \cdot 2
\end{align*} \]
IDEA: again do \(\frac{2}{3} \)

we won't divide by 0.
as \(\delta \to 0 \)

\[
\left(u = e^{\frac{1}{3}} q^{\frac{2}{3}} = 0 \right)
\]

if \(\delta = 0 \) or \(q = 0 \)

Finish Wednesday