Webwork 1 is out, due this Sunday.
Homework 1 will be out Friday.

Lecture 4

Recall: \(z = x^2 + y^2 \)

\[z = x^2 - y \]

Q: What are level curves of this?
have \(z_0 = x^2 - y \)

Write this as
\[
y = x^2 - z_0
\]

So: level curves are parabola
\[
y = x^2 \text{ shifted by } z_0
\]
Ex: \(z = f(x, y) = xy \)

Level curves: \(z_0 = xy \)

Then: \(y = \frac{x}{z_0} \) \(\left(x \neq 0 \right) \)

These are hyperbolas
\[x = 0 : \quad z_0 = 0 \]

\[0 = x \cdot y \]

So: either \(x = 0 \) or \(y = 0 \)

\[\uparrow \]

\[y \text{-axis} \]

\[\uparrow \]

\[x \text{-axis} \]

0 level curve is just \(x \text{-axis} + y \text{-axis} \)
Partial Derivatives

\[y = f(x) \]

then \(f'(x) \) measures how \(y \) changes as \(x \) changes.

Now: \(z = f(x, y) \), we can measure how \(z \) changes as we change only \(x \) or only \(y \).
Ex:

\[f(x, y) \]

\[y = b \]

Is \(f \) increasing at \((a, b)\)?

It depends

In \(x \)-direction: increasing
\nIn \(y \)-direction: decreasing
Suppose we fix $y = b$.

Then we obtain a curve through $f(a, b)$:

We can compute the derivative at (a, b):

\[
\frac{df}{da}(a, b) = \lim_{h \to 0} \frac{f(a+h, b) - f(a, b)}{h}
\]
This the partial derivative of f with respect to x at (a, b).

Ex: $f(x, y) = x^2 \cdot y$

$$
\frac{\partial}{\partial x} f(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}
$$

$$
= \lim_{h \to 0} \frac{(x+h)^2 \cdot y - x^2 \cdot y}{h}

= \lim_{h \to 0} \frac{(x^2 + 2xh + h^2) \cdot y - x^2 \cdot y}{h}
$$
\[\lim_{{h \to 0}} \frac{2x + 4h \cdot y}{h} = \lim_{{h \to 0}} (2x + 4y) = 2x y \]

\[f(x, y) = x^2 y \]

\[\frac{\partial}{\partial x} \left(x^2 y \right) = 2xy \]

Note: \(\frac{d}{dx} (x^2) = 2x \)
Observation:

To calculate the x-partial derivative, just of y as a constant and differentiate "normally" (as in one variable calculus).

Summary

\[\frac{\partial f}{\partial x} (x, y) = \frac{\partial}{\partial x} \left(f(x, y) \right) = f_x (x, y) \]

\[= \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h} \]

\[\frac{\partial f}{\partial y} (x, y) = \frac{\partial}{\partial y} \left(f(x, y) \right) = f_y (x, y) \]

\[= \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h} \]
Ex: \(f(x, y) = \sin(x - y) \)

\[\frac{\partial}{\partial x} (x, y) = \cos(x - y) \cdot y \]

Y constant for this

\[\left(\sin(x - 2\pi) \right)' = \cos(2\pi) \cdot 2 \]

\[\cos(2\pi) = 1 \]

Ex:

\[f(x, y) = x^2 e^{xy} \]

\[\frac{\partial}{\partial x} (x, y) = 2x \cdot e^{xy} + x^2 \left[e^{xy} \right] \]
\[a_y(x, y) = x^2 - x \cdot e^{xy} \]

\[= x^3 e^{xy} \]