CHAPTER 4

Siegel modular forms

4.1. The symplectic group and the Siegel upper half-space

4.1.1. The symplectic group. Fix a field \(F \) and a finite-dimensional vectorspace \(V/F \). A symplectic form on \(V \) is a non-degenerate bilinear form \([·,·]: V \times V \to F\) such that \([v,v] = 0\) for all \(v \in V \). A symplectic vector space is a pair \((V, [·,·])\) as above.

Exercise 18. Let \([·,·]: V \times V \to F\) be a bilinear form.

1. If the form is symplectic, it is alternating: \([u,v] = -[v,u]\).
2. If \(\text{char } F \neq 2\) and the form is alternating, it is symplectic.

Proof. \([u+v,u+v] = [u,u] + [u,v] + [v,u] + [v,v]\). \(\square\)

Example 19. Let \(U \) be an \(F \)-vectorspace and equip \(V = U \oplus U^* \) with the canonical form \([(q,p) , (q',p')] = \langle q',p \rangle - \langle q,p' \rangle \), where the angle brackets denote the pairing between \(U, U^* \).

Concretely, let \(\{u_i\} \subset U \) be a basis, \(\{u^*_i\} \subset U^* \) the dual basis. Then if \(v = \sum_{i=1}^n x_i u_i + \sum_{i=1}^n x_{i+n} u^*_i \) and \(v' = \sum_{i=1}^n y_i u_i + \sum_{i=1}^n y_{i+n} u^*_i \) in \(V \) we have
\[
[v,v'] = t_J’xJy
\]
where \(J = \begin{pmatrix} I_n & 0 \\ -0 & I_n \end{pmatrix} \).

Exercise 20 (Darboux’s Theorem). Show that any symplectic vector space is isomorphic to the canonical example.

Fix a symplectic vector space \(V \).

Lemma-Definition 21. Let \(L \subset V \) be a subspace, maximal under the assumption that \([·,·]|_L = 0\). Then \(\dim V = 2 \dim L \). Such subspaces are called Lagrangian subspaces.

Proof. Consider the map \(V/L \to L^* \) given by the symplectic form. \(\square\)

Lemma-Definition 22. Let \(L \subset V \) be a Lagrangian subspace, and let \(L^* \subset V \) be a subspace, maximal under the assumption that \(L^* \) is linearly disjoint from \(L \) and such that \([·,·]|_{L^*} = 0\). Then \(L^* \) is Lagrangian, \(V = L \oplus L^* \), and the symplectic form induces a non-degenerate pairing between \(L, L^* \). Such Lagrangian subspaces are called dual to \(L \). A representation \(V = L \oplus L^* \) is called a Lagrangian splitting of \(V \).

Notation 23. Given a Lagrangian splitting \(V = L \oplus L^* \) we identify \(L^* \) with the dual of \(L \) via the symplectic form. We use the notation ‘a to denote dual maps with respect to this duality.
4.1. The Symplectic Group and the Siegel Upper Half-space

Exercise 24 (Darboux’s Theorem, again). Show that every symplectic vector space is isomorphic to the canonical example.

Definition 25. Let V be a symplectic vector space. The associated symplectic group is the group

$$\text{Sp}(V) = \{ g \in \text{GL}(V) \mid \forall \nu, \nu' \in V : [g \nu, g \nu'] = \nu, \nu' \}.$$

The group of symplectic similitudes is

$$\text{GSp}(V) = \{ g \in \text{GL}(V) \mid \exists \lambda(g) \in F^\times \forall \nu, \nu' \in V : [g \nu, g \nu'] = \lambda(g) [\nu, \nu'] \}.$$

Exercise 26. Show that (with $2n = \dim_F V$) these are isomorphic to the groups of F-points of the linear algebraic groups

$$\text{Sp}_{2n} = \{ g \in \text{GL}_{2n} \mid ^t g J g = J \}$$

$$\text{GSp}_{2n} = \{ g \in \text{GL}_{2n} \mid \exists \lambda(g) \in \text{GL}_{1} : ^t g J g = \lambda(g) J \}.$$

Show that $\lambda : \text{GSp}_{2n} \to \text{GL}_1$ is a group homomorphism (and that $\det : \text{GL}_{2n} \to \text{GL}_1$ is the usual determinant).

Notation 27. Fixing a Lagrangian splitting $V = L \oplus L^*$ we may write any $g \in \text{GSp}(V)$ in the form $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a \in \text{Hom}(L, L)$, $b \in \text{Hom}(L^*, L)$ etc.

Exercise 28. $g \in \text{Sp}_{2n}(V)$ iff $^t ac = ^t ca \in \text{Hom}(L, L^*)$, $^t bd = ^t db \in \text{Hom}(L^*, L)$ and $^t ad - ^t bc = \text{Id}_{L^*} \in \text{Hom}(L^*, L^*)$.

Remark 29. In the standard example, we may think of $a, b, c, d \in M_n(F)$ and t denoting the usual transpose.

4.1.2. Distinguished subgroups and the affine patch.

Exercise 30 (Darboux’s theorem, yet again). Show that $\text{Sp}(V)$ acts transitively on the set of pairs (L, L^*) of dual Lagrangian subspaces.

Definition 31. The Levi subgroup [of the Siegel parabolic], to be denoted M, is the point stabilizer of a pair (L, L^*). It is necessarily a closed subgroup.

Note that we have a natural homomorphism $M \to \text{GL}(L)$ by restriction.

Exercise 32. For $h \in \text{GL}(L)$ let $m(h) = \text{diag}(h, ^t h^{-1}) \in \text{GL}(V)$. Then $m(h) \in \text{Sp}(V)$ and the map $m : \text{GL}(L) \to M$ is an isomorphism.

Lemma-Definition 33. Let $z \in \text{Hom}(L^*, L)$ be symmetric in that $z = ^t z \in \text{Hom}(L^*, L^{**}) = \text{Hom}(L^*, L)$. Then $n(z) = \begin{pmatrix} \text{Id}_L & z \\ z & \text{Id}_{L^*} \end{pmatrix} \in \text{Sp}(V)$ and $N = \{ n(z) \mid z \in \text{Sym}^2 L \}$ is a subgroup of $\text{Sp}(V)$, the unipotent radical [of the Siegel parabolic]. The map $z \mapsto n(z)$ is an isomorphism $(\text{Sym}^2 L, +) \to N$.

Exercise 34. Show that N is normalized by M. Show that $P = MN \simeq M \times N$ (the Siegel parabolic subgroup) is the stabilizer of L in the transitive action of $\text{Sp}(V)$ on the set of Lagrangian subspaces of V. Show that N a closed subgroup of P, hence of $\text{Sp}(V)$.

Proposition 35. Show the set of Lagrangian subspaces is closed in $\text{Gr}(n, V)$. In particular, $\text{Sp}(V)/P$ is a projective variety and P is a parabolic subgroup.
4.1. The symplectic group and the Siegel upper half-space

Definition 36. Call a Lagrangian subspace \tilde{L} generic if its projection onto L^\ast via the decomposition $V = L \oplus L^\ast$ is surjective.

Exercise 37. A Lagrangian is generic iff it is dual to L.

Lemma 38. The set of generic Lagrangians is exactly the N-orbit of L^\ast. It is an open subset of $\text{Sp}(V)/P$ on which N acts freely.

Proof. Since $\text{Sp}(V)$ acts transitively on pairs of dual Lagrangians, $P = \text{Stab}_G(L)$ acts transitively on Lagrangians dual to L. But $P = NM$ where $M = \text{Stab}_P(L^\ast)$ and the claim follows.

Proof. Let \tilde{L} be a generic Lagrangian subspace. Then the inclusion $\tilde{L} \subset V \cong L \oplus L^\ast$ realises \tilde{L} as the graph of a function $z: L^\ast \to L$, and it is clear that $\tilde{L} = t(z)L^\ast$. To show that $t(z) \in \text{Sp}(V)$ we need to verify that z is self-dual. For this note that t^1z is defined by the relation $[t^1z(u), v] = [z(v), u]$ for all $u, v \in L^\ast$. However, $u + z(u), v + z(v)$ both belong to the Lagrangian subspace \tilde{L} and it follows that

$$0 = [u + z(u), v + z(v)]$$

$$= [u, v] + [u, z(v)] + [z(u), v] + [z(u), z(v)]$$

$$= [z(u), v] + [u, z(v)]$$

since L^\ast and L are both Lagrangian. It follows that $[z(u), v] = [z(v), u]$ for all $u, v \in L^\ast$, in other words that $t^1z = z$. The action is free since $t(z)L^\ast \neq L^\ast$ whenever $z \neq 0$.

Finally, it suffices to show that if $V = L \oplus L^\ast$ then $\{ \tilde{L} \in \text{Gr}(n, V) \mid \tilde{L} \cap L = \emptyset \}$ is open.

Exercise 39. Let $Z = Z(M)$. Show that $Z \cong \text{GL}_1$ and that $Z_{\text{Sp}(V)}(Z) = M$ (hint: note that $V = L \oplus L^\ast$ is exactly the eigenspace decomposition of V wrt the action of Z).

Exercise 40. Fix a symmetric isomorphism $I: L^\ast \to L$ (i.e. $t^1I = I$) and let $w = \begin{pmatrix} -I & 1 \\ I & 0 \end{pmatrix}$. Then $w \in \text{Sp}(V)$ normalizes Z, on which it acts by the non-trivial automorphism. Further, w exchanges the Lagrangian subspaces L, L^\ast.

Solution. It is clear that $wL^\ast = L$ and $wL = L^\ast$. Also, $w^2 = -\text{Id}_V$ so $w^{-1} = -w$. If $u \in L$ and $t \in \text{GL}_1$ then

$$\begin{align*}
wm(t)w^{-1}u &= wm(t)(I^{-1}u) = wt^{-1}(I^{-1}u) = t^{-1}II^{-1}u = t^{-1}u = m(t^{-1})u
\end{align*}$$

(since $I^{-1}u \in L^\ast$) and similarly for $v \in L^\ast$, so $wm(t)w^{-1} = m(t^{-1})$. We still need to verify that $[wu, wv] = [u, v]$ for all $u, v \in V$, but it suffices to consider the case $u \in L, v \in L^\ast$ and then

$$[wu, wv] = [-I^{-1}u, Iv] = [-I^{-1}Iv, u]$$

$$= -[v, u] = [u, v].$$

Lemma 41 (Bruhat decomposition). The “big cell” $NW \subset \text{Sp}(V)$ is open.
shows that every element of \(W \) has invertible lower left corner, and conversely, since \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) we see that \(h = -Ic \) and \(z = ac^{-1} \) are uniquely determined, and furthermore that

\[
\begin{pmatrix} 1 & z \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -I^{-1} & I \\ h & h^{-1} \end{pmatrix} \begin{pmatrix} 1 & z' \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -zI^{-1}h & -zI^{-1}hz' + I'h^{-1} \\ -I^{-1}h & -I^{-1}hz' \end{pmatrix}
\]

so, as noted in the lemma, if \(cz + d \) is invertible we have \(gn(z)w \in n(z')wm(h)N \) with \(h = I(cz + d)^{-1}I^{-1} \) and \(z' = (az + b)(cz + d)^{-1} \). Note that \(h \) and \(z' \) are independent of the choice of \(I \).

Exercise 43. Show that \((u, v) = [u, wv] \) is a symmetric bilinear map.

Proof. \((v, u) = [v, wu] = [w^{-1}v, w] = [-wv, u] = [u, wv] \).

Lemma-Definition 44 (Maximal tori). Let \(A \subset GL(L) \) be the set of all matrices diagonal wrt to a basis. Then \(A \) is a maximal abelian subgroup of \(GL(L) \) and \(T = \{ m(a) \mid a \in A \} \) is a maximal abelian subgroup of \(Sp(V) \), the maximal torus.

Proof. That \(Z_{GL(L)}(A) = A \) is well known. Next, we have \(Z_G(T) \subset Z_G(Z(M)) = M \) since \(Z(M) \subset T \). It follows that \(Z_G(T) = Z_M(A) = m(\{ Z_{GL(L)}(A) \}) = m(A) = T \).

Lemma 45. \(\mathfrak{sp}_{2n} = \text{Lie} \cdot \text{Sp}_{2n} \) \(= \{ X \in M_{2n} \mid ^tJX + JX = 0 \} \). \(\text{Lie} \cdot \text{Sp}(V) \) \(= \{ X \in \text{End}(V) \mid \forall \xi, \xi' \in V : [X\xi, \xi'] + [\xi, X\xi'] = 0 \} \).

Exercise 46. \(X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{sp}_{2n} \) iff \(d = -t^ac, t^bc = c, ^tb = b \). In particular, \(\dim \mathfrak{sp}_{2n} = 2n^2 + n \).

Exercise 47. Let \(\{ e_i \}_{i=1}^{n} : A \rightarrow GL_1 \) be the eigenvalues with respect to our fixed basis of \(W \), thought of as functions \(T \rightarrow GL_1 \). Then the joint eigenvalues \(\alpha : T \rightarrow GL_1 \) acting on \(\text{Lie} \cdot \text{Sp}(V) \) are \(\{ e_i \pm e_j \}_{i \neq j} \cup \{ \pm 2e_i \} \cup \{ 0 \} \). The zero eigenspace is \(\text{Lie} \cdot T \) and each other eigenspace is one-dimensional.

Solution. Note that \(\text{Lie} \cdot \text{Sp}(V) = \text{Lie} \cdot M \oplus \text{Lie} \cdot N \oplus \text{Lie} \cdot \tilde{N} \) where \(\tilde{N} = \text{Lie} \cdot wNw^{-1} \), and analyze the action of \(T \) in each case.
4.1.3. Real symplectic spaces and Siegel upper half-space. Suppose now that V is a real symplectic vector space and fix a Lagrangian splitting $V = L \oplus L^*$. Let $G = \text{Sp}(V)$, $G(\mathbb{C}) = \text{Sp}(V \otimes_{\mathbb{R}} \mathbb{C})$. We similar have subgroups $M, M(\mathbb{C}), N, N(\mathbb{C}), P, P(\mathbb{C}), T, T(\mathbb{C})$. Let w be the long Weyl element from the previous section.

Exercise 48. For $\zeta = a + ib \in \mathbb{C}$ and $x \in V$ set $\zeta \cdot x = ax + bwx$. This endows V with the structure of a complex vector space.

Solution. We have $w^2 = -1V$.

Exercise 49. Suppose that $I: L^* \to L$ is negative definite. Then the real-valued pairing $(x, y) = [x, wy]$ is the real part of a hermitian pairing on V.

Solution. We already know that this is \mathbb{R}-bilinear. To check definiteness let $x = q + p$ with $q \in L$ and $p \in L^*$, in which case

$$(x, x) = [x, wx] = [q + p, Ip - I^{-1}q] = [p, Ip] - [q, I^{-1}q] = -[Ip, p] - [q, I^{-1}p].$$

Finally, $(ix, y) = (wx, y) = [wx, wy] = [x, y]$ is symplectic.

Exercise 50. The unitary group K associated to this Hermitian pairing is a subgroup of G.

Solution. The unitary group preserves the complex part of the Hermitian pairing.

Proposition 51. K is a maximal closed subgroup of G.

Proof. The representation of K on $\text{sp}V$ decomposes as the direct sum $\text{Lie} K \oplus p$ where p is irreducible, so K is a maximal connected subgroup. It follows that any subgroup containing K is contained in the normalizer of K. But if $g \in G$ normalizes K then g maps the inner product (\cdot, \cdot) to another one fixed by K. By Schur’s Lemma g is scalar and since $\text{Sp}(V) \subset \text{SL}(V)$ this implies $g = \pm 1V \in K$. □

Corollary 52. Let $Z(K)$ be the centre of the group K (recall that the centre of $U(n)$ is isomorphic to $U(1)$). Then $Z_G(Z(K)) = K$.

Exercise 53. Let $U(1) = \{ z \in \mathbb{C} \mid |z| = 1 \}$. Then $Z \simeq \text{Hom}(U(1), U(1))$ via the map $n \mapsto (z \mapsto z^n)$ where $\text{Hom}(U(1), U(1))$ is either in the category of compact Lie groups or of real algebraic groups.

Corollary 54. There are exactly two isomorphisms $\rho: U(1) \to Z(K)$.

Exercise 55. There are two eigenspaces L_\pm of ρ in $V_\mathbb{C} = V \otimes_{\mathbb{R}} \mathbb{C}$ (on which $U(1)$ acts by its two isomorphic representations). These spaces are Lagrangian, generic with respect to $L_\mathbb{C} \subset V_\mathbb{C}$.

Lemma 56. $\text{Stab}_G(L_+) = K$.

Proof. Since K centralizes its center, it acts on each eigenspace and $K \subset \text{Stab}_G(L_+)$. Equality follows since K is a maximal closed subgroup. □

Definition 57. The image of G/K in $G(\mathbb{C})/P(\mathbb{C})$ as the orbit of L_+ is called Siegel upper half space and denoted \mathbb{H}.

Lemma 58. Let $g \in G$ and $z \in \mathbb{H}$. Then $cz + d$ is invertible.
4.1. THE SYMPLECTIC GROUP AND THE SIEGEL UPPER HALF-SPACE

Proof. The Lagrangian \(gL+\) is one of the Lagrangians corresponding to the maximal compact subgroup \(gKg^{-1}\), so it is also generic. □

Proposition 59. \(G/K\) is open in the affine patch \(N_wP/C\).

Proof. \(\dim_R G/K = 2n^2 + n - n^2 = n(n+1)\), \(\dim_R N_C = 2 \dim_C N_C = 2 \binom{n}{2}\) since \(N_C\) is the space of symmetric matrices. □

Corollary 60. \(G/K\) has a complex structure, compatible with its manifold structure.

4.1.4. Vector bundles and factors of automorphy. In terms of the first section, if \(W\) is an \(F\)-vectorspace, any finite-dimensional representation \(\tilde{\sigma}: M \to GL(W)\) induces a vector bundle \(G \times P W \to G/P\). The restriction to the affine patch \(N_w \subset G/P\) is isomorphic to \(N \times W\). Our explicit \(G\)-action then reads:

\[
g \cdot (n(z)wP,\omega) = (n ((az+b)(cz+d)^{-1}) wP, \tilde{\sigma} (I(cz+d)^{-1}I^{-1}))
\]

Returning to the case of real scalars, any finite-dimensional complex representation \((\sigma,W)\) of \(K\) induces the vector bundle \(G \times_K P \to G/K\). The inclusion \(K \subset GL(L_+)^\ast\) of a maximal compact subgroup; by the Weyl unitary trick we can extend \(\sigma\) to a holomorphic representation \(\tilde{\sigma}: GL(L_+) \to GL(W)\), equivalently to a representation \(\tilde{\sigma}: P_C \to GL(W)\).

Proposition 61. The inclusions \(G \times_K W \subset Nw \times W \subset G_C \times P_C\) are compatible with the bundle structures. In particular, \(G \times_K W\) is a holomorphic vector bundle over \(G/K\).