Do as many as you can. For the most part, these exercises are things I’d like to have covered in lecture, but didn’t want to take the time over. If a question is marked with *, I don’t know how to do it.

1. Let $\phi: R \rightarrow S$ be a ring homomorphism and suppose S is f.g. projective when considered as a left R-module by means of ϕ, that is, when R acts on S according to $r \cdot s = \phi(r)s$.

 Let M be a left S module, and let R act on M by $r \cdot m = \phi(r)m$. Denote the resulting R module by R^M. Show that if M is f.g. projective over S, then R^M is f.g. projective over R.

 Construct a “wrong way” map $\phi^!: K_0(S) \rightarrow K_0(R)$ by means of $\phi^![M] = [R^M]$.

2. Let R be a ring, and suppose $P \oplus Q = F$ where F is a flat left R-module. Prove that P is a flat left R-module.

3. Let R be a commutative ring. Let a be a finitely generated idempotent ideal, so $a^2 = a$. Prove that a is principal, and generated by an idempotent element.

4. Let R be a (possibly noncommutative) associative unital ring in which $1 \neq 0$. Prove the following are equivalent:

 (a) R has a unique maximal left ideal;
 (b) R has a unique maximal right ideal;
 (c) R has a two-sided ideal that is maximal as a left ideal.
 (d) For any element $x \in R$, at least one of x or $1 - x$ is a unit.

5. Let k be a field and let k^\aleph_0 denote a countably-infinite dimensional k vector space. Let $R = \text{End}_k(k^\aleph_0)$ denote the ring of k-linear endomorphisms of k^\aleph_0, where multiplication is given by composition. Prove that $R \oplus R \cong R$ as left R-modules, and hence that R does not have the invariant basis property.

6. Let R be a commutative ring. View Spec R as a topological space. Let $\{X_i\}_{i \in I}$ denote the set of connected components of Spec R. Fix a f.g. projective R module Q. Prove that for each X_i, the function $\text{rank}_R Q$ is constant as p ranges over the prime ideals in X_i.

7. Prove the “geometric Nakayama lemma”: let R be a commutative ring and M a f.g. R module. Suppose p is a prime ideal of R such that $M_p = 0$. Show that there exists some element $f \notin R \setminus p$ such that $M_f = 0$.

8. Give an example, with proof, of a space X such that $\text{Vect}_R(X)$ is not an abelian category. Prove that $P(Z)$ is not an abelian category.

9. Does there exist a normal Hausdorff (necessarily noncompact) topological space X such that Swan’s theorem fails for X?

Fun question: We know that $R = \mathbb{Z}[\sqrt{-5}]$ is a Dedekind domain that is not a PID, hence it must have infinitely many maximal ideals. Let m be a maximal ideal of R, prove that R/m is a finite field. Prove that for each prime number p, there is at least one maximal ideal m for which R/m has characteristic p. Deduce there are infinitely many prime numbers.