1. Suppose \(f(z) \) is a complex polynomial of degree \(n \), viewed as a map \(f : \mathbb{C} \rightarrow \mathbb{C} \). Extend \(f \) to a map \(\hat{f} : S^2 \rightarrow S^2 \), where \(S^2 \) is the one-point compactification. Show that \(\hat{f} \) is homotopic to the map \(\hat{g} : S^2 \rightarrow S^2 \) induced by \(z \mapsto z^n \), and that this map is of degree \(n \).

2. Hatcher: chapter 2.2, question 11. For your convenience, this question is restated here.

A 3–dimensional CW complex is described as follows. A solid cube, \(C \), is given with the evident CW structure, consisting of 8 vertices (0–cells), 12 edges (closed 1–cells), 6 faces (closed 2–cells) and a single 3–cell. The following identifications are made: each face (closed 2–cell) is identified with the opposite face by means of a clockwise quarter-twist. That is, if \(F_1 \) and \(F_2 \) are two opposite faces of the cube, a homeomorphism \(\phi_{12} : F_1 \rightarrow F_2 \) is given by looking at \(F_1 \)—setting it to be the front face of the cube—, rotating it by \(\pi/2 \) in the clockwise direction around its midpoint, and then projecting it backwards onto the back face of the cube—\(F_2 \). One does this for each opposing pair of faces, giving \(\phi_{12}, \phi_{34} \) and \(\phi_{56} \). One now lets \(X \) denote the quotient of \(C \) by the relation \(x \sim \phi(x) \) where \(\phi \) denotes any of the three homeomorphisms given. The space \(X \) is still a CW complex, but has 1 3–cell and only 3 faces. Certain edges of the original cube have also been identified—the precise number of edges of \(X \) is not given here.

Write down a chain complex for the cellular homology of \(X \) and calculate \(H_*(X; \mathbb{Z}) \).

4. Fix a natural number \(n \). Construct the Moore space \(M(n, 1) \) as follows. Let \(f_n : S^1 \rightarrow S^1 \) be a degree-\(n \) map and let \(M(n, 1) \) be the CW complex having 1-skeleton \(S^1 \) and a single 2-cell, attached to \(S^1 \) by means of \(f_n \).

(a) Write down the homology \(H_*(M(n, 1); \mathbb{Z}) \).
(b) Write down the homology \(H_*(S^2 \times M(n, 1); \mathbb{Z}) \).
(c) Write down the homology \(H_*(M(n, 1) \times M(n, 1), \mathbb{Z}) \).
(d) Consider the map \(\phi : M(n, 1) \rightarrow S^2 \) given by collapsing the 1-skeleton of \(M(n, 1) \) to the base-point. This induces a map \(\phi \times \text{id} : M(n, 1) \times M(n, 1) \rightarrow S^2 \times M(n, 1) \). What is the induced map on integer-valued homology?

5. Does there exist a space \(X \) such that \(H_1(X; \mathbb{Z}) \neq 0 \) but \(H_1(X; F) \equiv 0 \) for all fields \(F \) (it suffices to check when \(F = \mathbb{Z}/(p) \) and \(F = \mathbb{Q} \))?