Def 11.1 Let \mathbb{R}, \mathbb{C} be topological spaces and $p : \mathbb{C} \to \mathbb{R}$ a continuous map. We say p is a covering space map if $\forall x \in \mathbb{R}$, there exists U, x open s.t. $p^{-1}(U) = \bigsqcup_{i \in I} V_i$, s.t. $p \big|_{V_i} : V_i \to U_i$.

Example 11.2 1. Any identity map is a covering map.
2. $p : \mathbb{R} \to S^1$ given by $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is covering. Indeed, we already have seen that for any $x \in S^1$, there exists some $V \in \mathbb{R}$ s.t. $p \big|_{V} : V \to p(V) \times \{x\}$ is a homeomorphism. Then it suffices to observe that $p^{-1}(p(V)) = \{x + 2\pi n | n \in \mathbb{Z}, v \in V\}$ is a disjoint union.

3. Let $S' \xrightarrow{f^0} S$ be defined as follows: view $S' = \{z \in \mathbb{C} | |z| = 1\}$

$$f^0 : S' \to S' \quad f^0(z) = e^z.$$ i.e. $f^0(\cos \theta + i \sin \theta) = \cos(n\theta) + i \sin(n\theta)$.

f^0 is a covering map.
(Exercise).

Def 11.3.1 If \(p : C \to \tilde{X} \) is a map of spaces (e.g. a covering space map) and \(f : Y \to \tilde{X} \) an \(\tilde{X} \)-map:

\[
\begin{array}{ccc}
Y & \xrightarrow{f} & \tilde{X} \\
\downarrow & & \downarrow \\
\quad & & \\
\quad & & \\
\end{array}
\]

then a map \(\tilde{f} : Y \to C \) s.t. \(p \circ \tilde{f} = f \) is called a \textit{lift} or \textit{lifting} of \(f \) to \(C \).

Def 11.4.1 If \(\{ \tilde{X}_\alpha \}_{\alpha \in \mathcal{A}} \) is a family of disjoint top spaces, then \(\coprod_{\alpha \in \mathcal{A}} \tilde{X}_\alpha \), their disjoint union is the \(U \tilde{X}_\alpha \) given the finest topology making all inclusions \(\tilde{X}_\alpha \to \coprod_{\alpha \in \mathcal{A}} \tilde{X}_\alpha \) continuous.

i.e. \(U \subseteq \coprod_{\alpha \in \mathcal{A}} \tilde{X}_\alpha \) is open if

\[
U \subseteq \tilde{X}_\alpha \subseteq \coprod_{\alpha \in \mathcal{A}} \tilde{X}_\alpha \quad \text{& this generates a topology.}
\]
Note: $\tilde{\xi}_0 \rightarrow N \tilde{\xi}_0$ in homomorphic to its image.

Prop 11.51 (Unique lifting property)

Let $p: C \rightarrow \tilde{X}$ be a covering space and let Y be a connected space. Suppose \tilde{f}_1, \tilde{f}_2 are two lifts that agree at one point of Y. Then $\tilde{f}_1 = \tilde{f}_2$.

Proof: We show the set of points where two lifts agree is both open and closed, and since it is not empty, it must be Y.

Suppose $y \in Y$ is s.t.

then $\exists U \ni f_i(y)$ minimizing the cover

Restrict attention to

\[
\begin{array}{c}
\tilde{f}_i \quad \overset{N}{\rightarrow} \\
\bigcap_{i \in \mathbb{Z}} U_i \quad f_i \\
\end{array}
\]

Then $y \in f^{-1}(U)$ \rightarrow U
If \(\tilde{f}_1(y) \neq \tilde{f}_2(y) \), then \(\tilde{f}_1(y) \in U_i \neq U_j \).

\(\tilde{f}_1^{-1}(U_i) \cap \tilde{f}_2^{-1}(U_j) \) gives an open set on which \(\tilde{f}_1, \tilde{f}_2 \) differ.

Conversely, if \(\tilde{f}_1^{-1}(y) \cap \tilde{f}_2^{-1}(y) \in U_i \), then \(\tilde{f}_1^{-1}(U_i) \cap \tilde{f}_2^{-1}(U_i) \) gives an open set where they agree. \(\square \)

Prop 11.61 (The Homotopy Lifting Property)

Given a covering space \(p: C \to \tilde{X} \) and a commuting diagram

\[
\begin{array}{ccc}
Y \times I & \xrightarrow{h} & Y \\
\downarrow p & & \downarrow p \\
Y \times I & \xrightarrow{\tilde{f}} & C \\
\end{array}
\]

there exists a unique lift \(\tilde{g}: Y \times I \to C \) such that both triangles commute, i.e.

a) \(\tilde{g}(y, 0) = \tilde{f}(y) \)

b) \(p(\tilde{g}(y, t)) = h(y, t) \).

Proof: Any lift must be unique - m
fact, if $y \in y$, then $y \cup I$ is connected if 11.6 applies to show $A \mid y \times I$ is unique if $\exists I$ exists.
Let
\[U = \{ u \in X \mid u \text{ open}, p^{-1}(u) = \prod_{i \in I} u_i, p|_{u_i} \approx u_i \} \]
\[\forall i \]

Consider \(H^i(U) \); this covers \(Y \times I \).

Fix \(y \in Y \). Then \(y \times I \subseteq Y \times I \) is compact and so is covered by finitely many sets of the form \(H^i(U) \).

\[H^i(U_1) \cup H^i(U_2) \cup \ldots \cup H^i(U_n) \]

For each \(t \in I \), choose a \(u_i \) so that \((t - \varepsilon, t + \varepsilon) \cap i \subseteq \{ y \} \times (t - \varepsilon, t + \varepsilon) \)

for some \(i \).

We can again restrict to finitely many such \(t \) giving a cover of \(I \) by \(u_i \) \(s.t. \)

\[y \times I \subseteq y \times I_i \subseteq H^i(U_i) \]

get them use the tube lemma to find
\(w_1, w_2 \subseteq Y \) open s.t.
\[
\chi_{w_1} \cap \chi_{w_2} = \emptyset.
\]
\(\chi_{w_1} \times \chi_{w_2} \subseteq \chi_{w_1}'(U, \cdot) \)

& intersecting gives an open \(W \in Y \)
\[
W \times \chi_{w_1} \subseteq \chi_{w_1}'(U, \cdot)
\]

& \(W \times \chi_{w_1} \cap \ldots \cap W \times \chi_{w_k} \subseteq \chi_{w_1} \times \ldots \times \chi_{w_k} \).

We can easily construct a lift \(C^w : \chi_{w_1} \to C \)

Do this for all \(y \in Y \)

then define

\[
G(y, t) = G^w(y, t) \quad \text{where } y \in w
\]

by uniqueness, the choice of \(w \) doesn't affect \(G^w(y, t) \). Moreover, if \(U \) is open \& \(C \)

then \((y, t) \in G^w(U) \iff (y, t) \in (C^w)^{-1}(U) \)

for some \(w \) \& \((C^w)^{-1}(U) \) is open

\((C^w)^{-1}(U) \subseteq C^{-1}(U) \), \(\forall U \).
Prop 11.7.1 Let $p : C \to \tilde{X}$ be a covering space. Let $c \in C$, then the map

$$\pi_1(C, c) \xrightarrow{p_*} \pi_1(\tilde{X}, p(c))$$

is injective & the image of p_* consists of homotopy classes of loops $\gamma : I \to \tilde{X}$ that lift to loops $\tilde{\gamma} : I \to C$ based at c.

Proof:

Consider $\delta : I \to C$ in ker p_*, then $p \circ \delta$ is a loop in \tilde{X} that is homotopic to the constant loop $\varepsilon_{p(c)}$.

We can lift the contracting homotopy of $p \circ \delta$ to get a contracting homotopy of δ using uniqueness.
The second claim is easy.

Prop 11.8 Let \(p : \tilde{X} \to X \) be a covering space, let \(x_0 \in \tilde{X} \) and write \(\tilde{x} = p^* (x_0) \). For any \(\gamma : (S^1, \underline{s}) \to (X, x_0) \) and \(c \in I \), write \(l(\gamma, c) \) for the lift of \(\gamma \) starting at \(c \). Suppose \(\gamma, \delta \) are loops in \(\tilde{X} \) at \(x_0 \) and \(l(\gamma, c) = c' \):

1. \(l(\gamma \circ \delta, c) = l(\gamma, c) \ast l(\delta, c') \)
2. \(l(\gamma, c) = l(\gamma, c') \)
3. \([l(\gamma, c)] \) depends only on \([\gamma], c\)

Prop 11.9. In the notation of the previous prop., given \(\gamma, c, c' \), the point \(c' = l(\gamma, c)(1) \) is determined by \(c' \) if the class of \([\gamma]\) in \(\pi_1(X, x_0) \) is \([\gamma'] \) with \(\gamma'(1) = c \). Therefore, \(l(\gamma, c)(1) = l(\gamma', c)(1) \).

Def 11.10. Topological group.
A top group is \((G, \ast, e, inv)\).
A top group action is if \(G \) is discrete.
An action is free if \(e \times X \to X \times X \) is inj. and has if
Corollary 11.11: Suppose \(X \) is a topological space, \(p: C \to X \) a covering space, and \(C \) is path connected. Let \(c_0 \in C \) be a basepoint and \(x_0 = p(c_0) \). Write \(f = \tilde{p}(x_0) \) (so \(c_0 \in \Gamma \)) then there is a bijection

\[
\mathcal{F} \to \pi_1(C, c_0) \setminus \pi_1((x_0, \mathfrak{g}) = \varnothing
\]

given by assigning to \(f \in \mathcal{F} \) the class \(\pi_1(C, c_0)[\gamma] \).

Proof: Any path \(\gamma \) in \(C \) from \(c_0 \) to \(f \) gives an element of \(\pi_1((x_0, \mathfrak{g}) \) by \(p_*(\gamma) \).

If two paths \(\gamma, \gamma' \) go from \(c_0 \) to \(f \) then \([\gamma'] \cdot [\gamma]^{-1} \) is in \(\pi_1(C, c_0) \)

so \([\gamma'] \cdot [\gamma]^{-1} \in \pi_1(C, c_0) \)

so the class of \(p_*(\gamma) \) in the quotient \(\pi_1(C) \setminus \pi_1((x_0, \mathfrak{g}) \)

depends only on the endpoint, \(f \).

Therefore \(b \) is well defined.

To see it is injective, suppose \(b(f_0) = b(f_1) \)

find paths \(\gamma_0, \gamma_1 \) starting at \(c_0 \) and ending at \(f_0, f_1 \)

then \([\mathfrak{g}] \in \pi_1(C, c_0) \) s.t. \(p_*(\mathfrak{g}) = p_*(\gamma_0) \cdot p_*(\gamma_1) \)

\(\mathfrak{g} \) a loop in \(C \). Then by lifting homotopies

\(s \times \gamma_0 \sim \gamma_1 \) and endpoints

\(\Rightarrow \) they end at the same point \(\Rightarrow f_0 = f_1 \).
Surjectivity is easier (given by lifting paths) if

\textbf{Def 11.12} If \(p : C \rightarrow X \) is a surjective covering space map where \(C \) is simply connected, then \(C \) is a \textit{universal cover} of \(X \).

\textbf{Cor 11.13} Given a universal cover \(p : C \rightarrow X \) and any \(x_0 \in X \), \(\pi_1(X, x_0) \cong p^{-1}(x_0) \), the bijection being of principal homogeneous \(\pi_1(X, x_0) \)-spaces. In fact the bijection is of groups if we think more.

\textbf{Example 11.14} \(p : IR \rightarrow S' \) given by
\[p(\theta) = (\cos 2\pi \theta, \sin 2\pi \theta) = e^{i2\pi \theta}. \]
is a universal cover.

There is a bijection \(\pi_1(S', (1,0)) \cong p^{-1}(1,0) \) of \(\{ 0, \pm 1, \pm 2, \ldots \} \times IR \).

Any loop \(\gamma : (S', (1,0)) \rightarrow (S', (1,0)) \) also \(\gamma : (I, 0) \rightarrow (S', (1,0)) \) \(\gamma(0) = (1,0) \)
is homotopic (rel endpoints) to one of
\[l_n(\theta) = (\cos 2\pi n \theta, \sin 2\pi n \theta), \ n \in \mathbb{Z}. \]

For a given path \(\gamma : I \rightarrow S' \), the integer \(n \) is called the \textit{winding number} of \(\gamma \), denote \([\gamma] = [l_n] \).
One checks directly that \(l_n \times l_m \cong l_{n+m} \) \((n, m \geq 0)\) and \(l_1 \times l_{-1} \cong l_0 \Rightarrow l_a \times l_b \cong l_{a+b} \) \(a, b \in \mathbb{Z}^2\).

The van Kampen Theorem

Def 11.15: Suppose \(\mathfrak{X} \) and \(\mathfrak{Y} \) are two groups, then by the free product of \(\mathfrak{X} \) and \(\mathfrak{Y} \), we mean the group \(\mathfrak{X} \ast \mathfrak{Y} \) consisting of words of length 20 with entries in \(\mathfrak{X} \) and \(\mathfrak{Y} \) subject to the relations:

\[
wx_1 x_2 w' \sim w(x_1 x_2)w' \quad x_1, x_2 \in \mathfrak{X} \\
w e_{\mathcal{X}} w' \sim w w' \quad w e_{\mathcal{Y}} w' \sim w w' \\
w y_1 y_2 w' \sim w(y_1 y_2)w' \quad y_1, y_2 \in \mathfrak{Y}
\]

the group operation on \(\mathfrak{X} \ast \mathfrak{Y} \) is given by concatenation.

Remarcs: 1) The free product of \(\mathfrak{X} \ast \mathfrak{Y} \) is the group generated by combining elements from \(\mathfrak{X} \) with those of \(\mathfrak{Y} \) & adding “no further relations.”

2) It is possible to define \(\mathfrak{X} \ast \bigwedge_{i \in I} A_i \) as well.

3) \(\text{Hom} \left(\mathfrak{X} \ast \mathfrak{Y}, G \right) \cong \text{Hom}(\mathfrak{X}, G) \times \text{Hom}(\mathfrak{Y}, G) \) (this is a rank to a definition of \(\mathfrak{X} \ast \mathfrak{Y} \) via universal property).
Def 11.16.1 Let \bar{X}, \bar{Y} be groups and $\phi: \bar{X} \to \bar{Y}$ a homomorphism. The **amalgamated product** of \bar{X} with \bar{Y} over $\bar{Z}, \bar{X} \times_{\bar{Z}} \bar{Y}$ is the group given as

$$(\bar{X} \times \bar{Y}) / N$$

where N is the normal subgroup generated by elements $\phi(z) \psi(z)^{-1}$.

Remarks: *) This is the group generated by elements of \bar{X}, \bar{Y} subject only to the relations $\phi(z) = \psi(z)$.

*) This satisfies the universal property

$$\text{Hom}(\bar{X} \times_{\bar{Z}} \bar{Y}, A) \cong \text{Hom}(\bar{X}, A) \times \text{Hom}(\bar{Y}, A).$$

C weave pushout presentation

$$\begin{array}{ccc}
\bar{X} & \to & \bar{Y} \\
\downarrow & & \downarrow \\
\bar{Z} & \to & \bar{Y}
\end{array}$$

Prop 11.17 (The Seifert-van Kampen theorem).

Let \bar{X} be a topological space s.t.

$$\bar{X} = U_1 \cup U_2$$

where U_1, U_2 are open and $U_1 \cap U_2$, U_1, U_2 are path connected. Let $x_0 \in U_1 \cap U_2$, then

$$\pi_1(\bar{X}, x_0) \cong \pi_1(U_1, x_0) \times \pi_1(U_2, x_0) / \pi_1(U_1 \cap U_2, x_0).$$
Example 11.18 | Suppose \(\overline{S} = U \cup U_2 \) (\(U, U_2 \) open)

where \(U, U_2 \) are simply connected. If \(U \cap U_2 \) path connected (nonempty), then \(\overline{S} \) is simply connected.

Proof: \(\overline{S} \) is path connected as the union of two path connected spaces with nonempty intersection.

Then apply the Brouwer theorem with \(x_0 \in U \cap U_2 \) then \(\pi_1(\overline{S}, x_0) = \{e\} \).

Note that if \(n \geq 2 \), then \(S^n \) is the one-point compactification of \(R^n \). Let \(n \) be
the north pole \((0, -1, 0, 1)\) & \(S^n \) the south pole \((0, 1, 0, -1)\).

Then
\[
S^n \setminus \{n\} \cong R^n
\]
\[
S^n \setminus \{n, s\} \cong R^n
\]
\[
S^n \setminus \{n, s\} \cong R^n \setminus \{0\}
\]
which is path connected (if \(n \geq 2 \) — this fails if \(n = 1 \)).

Therefore, \(\pi_1(S^n, s) = \{e\} \) & \(S^n, n \geq 2 \)
is simply connected.

Example 11.19 | Let \((X, x_0), (Y, y_0) \) be two spaces
s.t. \(X \) open sets \(U \ni x_0 \) \& \(Y \ni y_0 \) s.t. \(U \)
deformation retracts onto \(Sx_0 \) \& \(V \) def. retracts onto \(Sy_0 \).
(This is common — open subsets of \(R^n \) have this)
property.)

Let \(\mathbb{X} \lor Y \) denote the space \(\mathbb{X} \lor Y / \sim \)
where \(\sim \) is the relation \(x_0 \sim y_0 \)
given the basepoint \((x_0, y_0)\).

Then \(\mathbb{X} \lor Y = (U \lor V) \lor (X \lor V) \)
\(U \lor Y \sim Y, \mathbb{X} \lor V \sim \mathbb{X}, \quad (U \lor Y) \cap (X \lor V) = U \lor V \).

So \(\pi_1(\mathbb{X} \lor Y, \text{basepoint}) \cong \pi_1(\mathbb{X}, x_0) \times \pi_1(Y, y_0) \).

In particular: \(S' \lor S' \) has \(\pi_1(S' \lor S', s) \cong \mathbb{F}_2 \times \mathbb{F}_2 \).

This group is generated by
two letters \(x, y \) with no
relations beyond the obvious \(x \cdot x^{-1} = e = y \cdot y^{-1} \).

In particular \(x \cdot y = y \cdot x \); \(\mathbb{F}_2 \) is not abelian.

We define \(\mathbb{F}_1 = \mathbb{Z} \)
\(\mathbb{F}_n = \pi_1(S' \lor \cdots \lor S', s) \), the free group on
\(n \) letters.

Then \(n \geq 2 \), \(\mathbb{F}_n \) is not abelian.

(If \(G \) is any group that can be generated
by \(n \) elements, then \(G \) a surjective map
\(\mathbb{F}_n \twoheadrightarrow G \).)
Example 11.20

T

Torus minus a point

\[T \setminus \text{point} \cong S^1 \times S^1 \text{ and the loop} \]
\[[\mu] = [\alpha] [\beta] [\alpha^{-1}] [\beta^{-1}] \]

\[T \setminus U \]

\[\mu \cap N \]

\[(T \amalg Y) / \mu \cap N \]

has fundamental group given by
Prop 11.22 (The Lebesgue Covering Lemma).

Let \(\mathbb{R} \) be a compact metric space \(\mathbb{R} \) and \(U \) an open cover of \(\mathbb{R} \). There exists some \(\delta > 0 \) such that \(\forall x \in \mathbb{R} \), \(\exists U \in \mathcal{U} \) for some \(U \in \mathcal{U} \).

Proof: We may replace \(U \) by a finite subcover \(\{ U_1, U_2, \ldots, U_n \} \).

For each \(x \in \mathbb{R} \) define

\[
\delta(x) = \sup \{ t \in (0, \infty) \mid B(x, t) \subseteq U \text{ for some } U \in \mathcal{U} \}
\]

We claim \(\delta: \mathbb{R} \to (0, \infty) \) is a continuous function given \(\varepsilon > 0 \). If \(d(x, y) < \varepsilon \), then

\[
B(y, \frac{\varepsilon}{2}) \subseteq B(x, t) \subseteq B(y, t + \varepsilon)
\]

for any \(t \)

\[
\Rightarrow |s(x) - s(y)| < \varepsilon
\]

Therefore, \(s(x) \) attains a minimum value; i.e., \(\exists \delta > 0 \)

such that \(\forall x \in \mathbb{R} \), \(\exists U \in \mathcal{U} \) for some \(U \in \mathcal{U} \).
Def 11.23 | A groupoid G consists of a set of objects $ob G$ and morphisms $mor G$ so that
1. G is a category (small cat)
2. all morphisms are invertible.

Observation 11.24 | A groupoid having only one object is a group.

Def 11.24 | A morphism of groupoids is a functor $\phi : G \to G'$.
$\phi : ob G \to ob G'$
$\phi : mor G \to mor G'$

preserving composition of identities.

Recall the fundamental groupoid of a space \overline{x} has $\text{Ob} \Pi(\overline{x}) = \overline{x}$ (points of x)
$\text{Mor}(\overline{x}, \overline{y}) = \text{Hom} \text{closes of paths}$
$\gamma : I \to \overline{x}$
$\gamma(0) = \overline{x}, \gamma(1) = \overline{y}$

$\Pi(\cdot)$ is a functor

Prop 11.25 | (Van Kampen for groupoids) Let \overline{x} be a set. Let U, V be open sets s.t. $U \cup V = \overline{x}$
Let G be a groupoid. Suppose

$$
\begin{array}{c}
\Pi(U \cup V) \\ \downarrow \\
\Pi(U) \\ \downarrow \\
\Pi(U) \\
\end{array} \quad \xrightarrow{\psi} \quad
\begin{array}{c}
\Pi(U) \\ \downarrow \\
\Pi(U) \\
\downarrow \\
\Pi(U) \\
\end{array}
$$

commutes, the Θ making diag commute.

Proof: we have to define Θ for

1. points of \bar{X} (obj of $\Pi \bar{X}$)
2. homotopy classes of paths in \bar{X} (mor)

1. Points is easy. Any point in \bar{X} is either in U or in V, & define $\Theta(x) = \phi(x)$ or $\psi(x)$ as appropriate — if it's in both then these agree.

2. Morphisms are harder: For any $\ell \in \ker \Pi(U)$
we define $\Theta[\ell] = \phi[\ell]$
& $\Theta[\ell] = \psi[\ell]$ in the other case $\ell \in \ker \Pi(U)$.
Let \(\gamma \) be a life of paths in \(X \). A partition of \(I \) is a sequence \(t_0 < t_1 < t_2 < t_3 < \ldots < t_{n-1} < t_n = 1 \).

There exists some partition of \(I \) s.t. \(\gamma([t_i, t_{i+1}]) \subseteq U \) or \(\gamma([t_i, t_{i+1}]) \subseteq V \) then take \(\gamma_i : I \to X \) to be \(\gamma |_{[t_i, t_{i+1}]} \) rescaled to take unit time.

Then \(O(\gamma) = O(\gamma_1) \cdot O(\gamma_2) \cdots O(\gamma_n) \)

problemes: what if we use a different partition? First, consider adding a point \(t' \) somewhere - this will lie in an interval \([t_i, t_{i+1}]\) so the resulting \(\gamma([t_i, t']) \times \gamma([t', t_{i+1}]) = \gamma([t_i, t_{i+1}]) \)

\(O(\gamma) \) is not changed if we add finitely many points to the interval. Any two partitions have a common refinement, so \(O(\gamma) \) does not depend on the partition.

Now what if we have a different path \(\delta = \gamma \)? Take a homotopy \(H : I \times I \to X \); using the Lebesgue covering lemma, \(\delta \) the shape we had, we
can divide the square $s_{n,m}$ into smaller squares such that $H(s_{i,j}) \subseteq U$ or $H(s_{i,j}) \subseteq V$.

Now we take each $s_{i,j}$

$$
\epsilon_{i,j} \quad \alpha_{i,j} \quad \epsilon_{i,j+1} \quad \alpha_{i+1,j}
$$

$\epsilon_{0,j}$ is a count path at $\gamma(0)$, $\alpha_{n,j}$ is the path of $\gamma(n)$

$$\Theta(\epsilon_{1,j}) \ast \ldots \ast \Theta(\epsilon_{n,j}) = \Theta(\gamma)$$

and

$$\Theta(\epsilon_{i,j+1}) = \Theta(\alpha_{i,j})^{-1} \ast \Theta(\epsilon_{i,j}) \ast \Theta(\alpha_{i+1,j})$$

$$\Theta(\epsilon_{1,j+1}) \ast \Theta(\epsilon_{2,j+1}) \ast \ldots \ast \Theta(\epsilon_{n,j+1}) =$$

$$\Theta(\epsilon_{1,j}) \ast \Theta(\alpha_{2,j}) \ast \Theta(\alpha_{3,j}) \ast \ldots \ast \Theta(\epsilon_{n,j})$$

so in particular

$$\Theta([\gamma]) = \Theta([\delta])$$

so the map Θ is well defined.

Proof that $\Theta([\gamma \circ \delta]) = \Theta([\gamma]) \ast \Theta([\delta])$ is
Prop 11.26: Let \mathcal{X} be a path connected space and $x_0 \in \mathcal{X}$ a basepoint. For each point $x \in \mathcal{X}$ choose a path α_x from x to x_0. Then the morphism $\pi_1(\mathcal{X}) \rightarrow \pi_1(\mathcal{X}, x_0)$ by sending the path $x \rightarrow x_0$ to $\alpha_x \cdot \gamma \cdot \alpha_x^{-1}$ satisfies $\pi_1(\mathcal{X}, x_0) \xrightarrow{\text{incl.}} \pi_1(\mathcal{X}) \xrightarrow{\imath^*} \pi_1(\mathcal{X}, x_0)$.

Proof of S-vK Theorem:

We can assume $U, V \cong \mathcal{X}$ are path connected (components other than the component of x_0 will not appear).

Choose paths from each point in \mathcal{X} to x_0, then we obtain a diagram of parallel
Then we construct \(\phi \); if we had two different choices of \(\phi \), then we'd get two loops:
\[
\pi_1(\bar{x}) \to A, \text{ a contradiction.}
\]

So \(\pi_1(\bar{x}) \) is \(\cong \) the amalgamated product
\[
\pi_1(u) *_{\pi_1(u \cap v)} \pi_1(v)
\]
Covering Group Actions

Def 11.28 Let G be a (possibly non-discrete) topological group and X a top. space & $a: G \times X \to X$ an action map. Then define the quotient of X by G as the set of equivalence classes under the relation $x \sim g x$, endowed with the quotient topology: $q: X \to \underline{G}/X$ (or X/G).

This is also referred to as the orbit space of the action.

Def 11.27 Suppose G, a discrete group, acts continuously on a topological space X via $a: G \times X \to X$. We say the action is a covering action if, for all $x \in X$, there exists an open set $U \ni x$ such that $g U \cap U \neq \phi = g = e$.

This is stronger than being a free action.

Prop 11.28: If G is a discrete group & $a: G \times X \to X$ is a covering space action, then the map $p: X \to \underline{G}/X$ is a covering space, and if $x_0 \in X$, then $p'(x_0) = G$.

Proof: For a given $y \in \underline{G}/X$, find some $x \in X$ s.t. $p(x) = y$ & there exist $U \ni x$ s.t. $U \cap g U = \phi \forall g \in G \setminus \{e\}$
1. \(p_1^n : \mathbb{R} \to \mathbb{R}^n \) is a homomorphism.

2. \(p_1^n(p(n)) = \frac{1}{g(n)} \) for all \(g(n) \).

Example 11.29: \(\mathbb{Z} \subset \mathbb{R} \) with \((n, r) \mapsto 2n + r \)
gives a quotient \(\mathbb{R} \to \mathbb{R} / \mathbb{Z} \equiv \mathbb{S}^1 \).

b) If \(\mu_2 = \{ \pm 1 \} \) then \(\mu_2 \subset \mathbb{S}^n \) by \(\mu_2 \subset \mathbb{S}^n \) by mult.

\[
\mu_2 \subset \mathbb{S}^n \quad \text{and} \quad \mu_2 \subset \mathbb{S}^n \quad \text{by mult.}
\]

\[
\mu_2 \subset \mathbb{S}^n \quad \text{and} \quad \mu_2 \subset \mathbb{S}^n \quad \text{by mult.}
\]

As \(\mathbb{S}^n \to \mathbb{R}P^n \) is a covering map

\[
(\mathbb{S}^n \cong \mathbb{R}P^n \quad \text{since} \quad \pm 1).
\]