Defn 4.1. Let \(X \) be a topological space. If, for any pair of points \(x, y \) in \(X \), there exists

a) an open set \(U \ni x \), \(U \ni y \) or
 \(U \ni x \), \(U \ni y \)

then \(X \) is \(T_0 \).

b) an open set \(U \ni x \), \(U \ni y \)

then \(X \) is \(T_1 \).

c) two open sets \(U \ni x \), \(U \ni y \)

\(U \cap U' = \emptyset \)

then \(X \) is Hausdorff or \(T_2 \).

Hausdorff \(\Rightarrow T_1 \Rightarrow T_0 \).
Prop 4.2: Any metric topology is Hausdorff.

Proof: Given $x, y \in \mathcal{X}$, let $d(x, y)$, define $\varepsilon = \frac{1}{2} d(x, y)$. Then $B(x; \varepsilon) \cap B(y; \varepsilon) = \emptyset$.

For any such ε satisfies

$$d(x, z) < \varepsilon, \quad d(y, z) < \varepsilon$$

$$d(x, y) = 2 \varepsilon + \epsilon$$

so $B(x; \varepsilon), B(y; \varepsilon)$ form the required pair of open sets.

Example 4.3: The following spaces are not Hausdorff and therefore not metrizable.
(a) Any set with at least 2 elements
of the indiscrete topology.

(b) Any infinite set with the cofinite topology (finite sets "& \{\emptyset\} are closed.)

(c) The 2 element set with open sets

\[\cdot P_1 \quad \cdot P_2 \]

as indicated

This is also \(I/(0,1) \).

Example (a) is not \(T_0 \). Example
(b) is \(T_1 \) but not Hausdorff (\(T_2 \)).

Example (c) is \(T_0 \) but not \(T_1 \).

(Any open nbhd of \(P_1 \) contains \(P_2 \).)
The Countability Axiom

Def 4.4.1 If (X,τ) is a topological space & $x \in \overline{X}$, then a local basis U for T at x is a set $U \in \tau$ such that:
- $x \in U, A \subseteq U$
- A open $\forall x, \exists U \in U$ s.t. $x \in U \subseteq V$.
Def 4.5] If \(X \) is a topological space, we say \(X \) is first countable if every \(x \in X \) has a countable local basis.

Prop 4.6] Every metric topology is first countable.

Proof: Suppose \((X,d)\) is a metric space; let \(x \in X \). Consider \(F = \{ B(x, \frac{1}{n}) \}_{n=1}^{\infty} \). Let \(U \ni x \) be open, then \(\exists \varepsilon > 0 \) s.t. \(B(x, \varepsilon) \subseteq U \)

Choose \(n > \frac{1}{\varepsilon} \) then \(B(x, \frac{1}{n}) \subseteq B(x, \varepsilon) \subseteq U \), so \(F \) is a local basis at \(x \). \(\Box \)
Def 4.7 A topological space X is second countable if it has a countable basis.

Note second countable \Rightarrow first countable.

Example 4.8 \mathbb{R} with the usual topology is second countable. Given any $x \in \mathbb{R}$ if $(a, b) \ni x$, we can find rational numbers p, q in \mathbb{Q} such that $a < p < x < q < b$.

In particular, if $\mathcal{F} = \{ (p, q) \}_{p \in \mathbb{Q}, q \in \mathbb{Q}}$ then \mathcal{F} is countable if for any
open U if $x \in U \Rightarrow (p, q) \in U$

Prop 4.9 A space with a countable subbasis is second countable.

Proof Let \mathcal{B} be a countable subbasis for \mathcal{B}. Let B_j denote the set of intersections of j-tuples of sets in \mathcal{B}. Then $\mathcal{B}^j \rightarrow B_j$, so B_j is countable. $\mathcal{B} = \bigcup_{j=1}^{\infty} B_j$ is therefore a countable basis. \square
Prop 4.10: Let \(\{ X_i \}_{i \in \mathbb{Z}} \) be a countable set of second countable spaces, let
\(\bar{X} = \prod_{i \in I} X_i \) be given the product topology. Then \(\bar{X} \) is second countable.

Proof: Let \(\mathcal{B}_i \) denote a countable basis for \(\bar{X}_i \). Then \(\mathcal{B}_i = \{ \pi_i^{-1}(U) : U \in \mathcal{B}_i \} \) is a countable set.

\[S = \bigcup_{i \in I} V_i \] is a countable set.

\(S \) is a subbasis for the product topology.

(For any open \(V \subseteq \bar{X} \), \(\pi_i^{-1}(V) \) is expressible as \(\bigcup_{U \in \mathcal{B}_i} \pi_i^{-1}(U) \) in \(\mathcal{B}_i \).)
so one can generate the usual subbasis using this one).

Corollary 4.11 \(\mathbb{R}^n \) with the usual topology is second countable.

Alternative proof: verify that the set
\[
\left\{ B_2(\bar{x}, r) \mid \bar{x} = (x_1, \ldots, x_n) \in \mathbb{Q}^n, r \in \mathbb{Q} \right\}
\]
forms a countable basis for \(\mathbb{R}^n \).

Defn 4.12 A subset \(A \subseteq \mathbb{R} \) is said to be dense if \(\overline{A} = \mathbb{R} \).

Equivalently, \(A \) is dense if every open set \(U \subseteq \mathbb{R} \) meets \(A \) (\(U \cap A \neq \emptyset \)).
Defn 4.13 | A subset $A \subseteq \mathbb{R}$ is **sparse** if $\overline{\mathbb{R}} - \overline{A}$ is dense.

A is sparse $\Rightarrow \overline{\mathbb{R}} - \overline{A} = \mathbb{R}$

\Rightarrow no nonempty open set contained in \overline{A}

\Rightarrow $\text{Int}(\overline{A}) = \emptyset$.

Example 4.14 | $\mathbb{Q} \subseteq \mathbb{R}$

$I = \mathbb{R} - \mathbb{Q}$ (irrational numbers)

both \mathbb{Q}, I are dense in \mathbb{R}.

Defn 4.15 | A topological space is **separable** if it contains a dense open set.

A second countable space is separable.
Prop 4.165
A separable metric space is second countable.

Choose a countable dense set \(S \subseteq \mathbb{R} \) and let \(\mathcal{B} = \{ B(x, \frac{1}{n}) \mid x \in S, n \in \mathbb{N} \} \).

Let \(U \subseteq \mathbb{R} \) be an open nbhd of a point in \(\mathbb{R} \). Then \(B(y, 4\varepsilon) \subseteq U \), for some \(\varepsilon > 0 \).

But now we can find \(x \in S \) s.t. \(\frac{1}{2} > \varepsilon \). Then \(x \in B(y, \varepsilon) \subseteq B(y, 4\varepsilon) \).

So we can find \(n \) s.t. \(\frac{1}{n} < 2\varepsilon \) and so \(B(x, \frac{1}{n}) \subseteq B(y, 4\varepsilon) \subseteq U \).

\[y \in B(x, \frac{1}{n}). \]

This is covered in Munkres' 3.80, along
with Lindelöf. We ignore the Lindelöf property.

Example 4.17) Note

First Countable \implies \text{ Separable}

Second Countable \implies \text{ Separable}

\text{Metrizable } \implies \text{ Separable}

\text{If metrizable } \implies \text{ Separable } \implies \text{ Second countable.}

Give any uncountable set the discrete metric, then the result is metrizable \& first cible but not second countable.

Example 4.18) Let \(\mathbb{R} \) be given the half-open interval topology, so
sets of the form $[a, b)$ form a basis. Let U be an open set containing x; then $[x, x + \varepsilon) \subseteq U$ for some $\varepsilon > 0$.

$\Rightarrow \quad [x, x + h) \subseteq U$ for some $n \in \mathbb{N}$.

$\mathcal{B}_x = \{[x, x + h) \mid n \in \mathbb{N}\}$ is a countable local basis for the topology at x.

\mathbb{R}_v is first countable.

Any open set contains $[a, b)$, which contains some $q \in \mathbb{Q}$, so $\mathbb{Q} \subseteq \mathbb{R}$ is a countable dense subset. \mathbb{R}_v is separable.
This space is not second countable.

Suppose \(B \) is a basis of \(x \in \mathbb{R} \). Then any open interval containing \(x \) in \([x, a)\) must contain an open interval of form \([x, a)\). Therefore there is an injective map \(\mathbb{R} \to B \), and \(B \) is not countable.

Regularity of Normality

Def 10.18: Let \(X \) be a space such that points of \(x \in X \) are closed. We say \(X \) is

a) regular if \(A \cap \overline{X} \) and all closed sets \(C \subseteq X - \{x\} \), there
exists open sets $U \ni x, \quad U \subset C$
such that $U \cap V = \emptyset$.

b) normal if \forall closed sets A, C

$s.t. A \cap C \neq \emptyset$, \exists open sets U, V

$U \supset A, \quad V \subset C, \quad U \cap V = \emptyset$

Alternate def: (Munkres 31.1)

• X is regular if $A \subset X \\& \ U \subset X$ open
a.) \(\overline{V} \subseteq u \)

- If normal, if \(A \) closed \(C \) & \(u \supseteq C \) open, \(\uparrow \) \(V \supseteq u \) open
- \(\overline{V} \subseteq u \).

\[T_0 \leq T_1 \leq \text{Hausdorff} \leq \text{Regular} \leq \text{Normal} \]

Prop 4.19 Every metrizable space is Normal
Proof: Let \((X, d)\) be a metric space. Let \(A, C\) be disjoint closed sets. Let \(a \in A\) be a point.

\(a \in X - C\), which is open, so \(\exists \varepsilon_a > 0\) \(\forall x \in B(a, \varepsilon_a) \cap C = \emptyset\).

Similarly we find balls \(B(c, \varepsilon_c) \cap A = \emptyset\)
around points in C.

Claim \(\forall a,c, B(a, \varepsilon_a/e) \cap B(c, \varepsilon_c) = \emptyset\); otherwise

\(d(a, c) < \frac{\varepsilon_a}{2} + \frac{\varepsilon_c}{2} < 2 \max\{\frac{\varepsilon_a}{2}, \frac{\varepsilon_c}{2}\}\)

\(\Rightarrow B(a, \varepsilon_a) \cap C \neq \emptyset\) or \(\emptyset\).
Now take \(\bigcup_{a \in A} B(a, \varepsilon/2) = U \)
\[
\bigcup_{c \in C} B(c, \varepsilon/2) = V. \quad \Box
\]

Prop 4.20: A regular, second countable space is normal

Let \(\overline{X} \) be a regular space and let \(B \) be a countable basis for \(\overline{X} \).

Let \(A, C \) be disjoint closed sets in \(\overline{X} \).

For each \(a \in A \) we can find \(U \subseteq B \), \(U \ni a \) s.t. \(\overline{U} \cap C = \emptyset \)
So we can find a countable family
\[\{ U_i : i = 1, 2, \ldots \} \]
\[\text{s.t. } A \subseteq \bigcup_{i=\infty} U_i \]
\[\overline{U_i} \cap C = \emptyset. \]
Similarly, find \[\{ V_i : i = 0, -1, \ldots \} \]
\[\text{s.t. } C \subseteq \bigcup_{i=1} V_i \]
\overline{V_i} \cap A = \emptyset.

Now replace \(U_i \) by \(U_i' = U_i - \bigcup_{j=1}^{i} \overline{V_j} \)

\(V_i \) by \(V_i' = V_i - \bigcup_{j=i+1}^{\infty} \overline{U_j} \).

\(U_i', V_i' \) are open.

\(A \subseteq \bigcup_{i=1}^{\infty} U_i' \), \(C \subseteq \bigcup_{i=1}^{\infty} V_i' \).

Consider \(U_i' \cap V_j' \). w.l.o.g. \(i \leq j \)

then \(V_j' \cap U_i' \leq V_j' \cap U_i \)

\(\leq V_j' \cap \overline{U_i} = \emptyset \).

So \(\bigcup_{i=1}^{\infty} U_i' \cap \bigcup_{i=1}^{\infty} V_j' = \emptyset \).
so \(\bigcap_{i=1}^{\infty} u_i \), \(\bigcap_{i=1}^{\infty} v_i \) are disjoint open sets. \(\Box \)

Prop 4.21 (Munkres 31.2) A subspace (resp. product) of Hausdorff (resp. regular) spaces is Hausdorff (resp. regular).

Proof. These are mainly ‘easy’ to prove. We will prove a product of regular spaces is regular.

Suppose \(X = \prod_{i \in I} X_i \) is a product
of regular spaces, \(\bar{X} \). If \(A_i \) are subsets of the \(\bar{X}_i \), we write \(\bigcap_{i \in I} A_i \) for

\[
\bigcap_{i \in I} \pi_i^{-1}(A_i).
\]

Let \(x \in \bar{X} \) & \(U \ni x \) an open nbhd.

Then \(\exists \bigcap_{i \in I} U_i \) s.t. \(x \in \bigcap_{i \in I} U_i \leq U \) and almost all \(U_i = \bar{X}_i \). (Sets like this are exactly \(\bigcap_{i \in I} \pi_i^{-1}(U_i) \), finite so form a basis of the product topology).

Since the \(\bar{X}_i \) are regular, \(\exists \pi_i, v_i \subseteq \bar{V}_i \subseteq U_i \) then form \(\bigcap_{i \in I} V_i \ni x \).
(Homework 3) in any product topology
\[\bigcap_{i \in I} \overline{V_i} = \overline{\bigcap_{i \in I} V_i} \]
therefore \[x \in \bigcap_{i \in I} V_i \leq \bigcap_{i \in I} U_i \leq \bigcap_{i \in I} \overline{U_i} \leq \overline{\bigcap_{i \in I} U_i} \]
open closure D
Warning 4.22

One can find normal spaces A, B s.t. $A \times B$ is not normal.
Homework ideas

S & S: 65 (not 2nd at all)

- finish topology & acabrief
- only write better argumnet
- need Besire cat