Definition 2.1] Let \(X \) be a set and \(\tau \) a set of subsets of \(X \). We say \((X, \tau) \) is a topological space if \(\tau \) satisfies:

P1. If \(\{ U_i : i \in I \} \subseteq \tau \), then
\[
\bigcup_{i \in I} U_i \in \tau \quad (\text{each } U_i \text{ open})
\]

P2. If \(\{ U_i, \ldots, U_n \} \subseteq \tau \), then
\[
\bigcap_{i=1}^{n} U_i \in \tau
\]

P3. \(\{ \emptyset, X \} \subseteq \tau \).

The sets \(\tau \) are open sets of the topology. The set \(\tau \) is called "a topology."
Note 2.2: If \((X, d)\) is a metric space then the set of open sets of \(X, \tau\) forms a topology — so \((X, \tau)\) is a topological space. This is called the metric topology.

Two different metrics may give rise to the same topology — we'll see examples later.

Not all topologies are metric; but the most important ones often are.

Example 2.3: Let \(X\) be a set and \(\tau = \{\emptyset, X\}\). Then \((X, \tau)\) is
a topological space. If \(X \) has at least 2 elements, then this is not a metric topology.

Example 2.4: Let \(X \) be an infinite set and let \(\tau \) consist of those sets \(U \subseteq X \) s.t. \(|X \setminus U| \) is finite or \(U = X \). Then \(\tau \) is a topology, the **cofinite topology.** It is not metric.

Def 2.5: If \((X, \tau)\) is a topological space and \(C \) is a subset of \(X \), s.t. \(X \setminus C \in \tau \) is open, then we say \(C \) is **closed.**
Prop 2.6: Let \mathcal{K} denote the set of closed sets of (\mathbb{R}, τ).

P_4: If $\{C_i\}_{i \in I} \subseteq \mathcal{K}$ then

$$\bigcup_{i \in I} C_i \in \mathcal{K}$$

(arbitrary union of closed is closed)

P_5: If $\{C_1, \ldots, C_n\} \subseteq \mathcal{K}$ then

$$\bigcup_{i=1}^n C_i \in \mathcal{K}$$

P_6: $\{\emptyset, \mathbb{R}\} \subseteq \mathcal{K}$.

Proof: Exercise.
Def 2.8: Let $(\mathcal{X}, \tau_1), (\mathcal{Y}, \tau_2)$ be top spaces. We say a function $f : \mathcal{X} \to \mathcal{Y}$ is continuous if $f^{-1}(U)$ is open in \mathcal{X} for all open $U \subseteq \mathcal{Y}$.

Note 2.8: If $[\mathcal{X}, \tau_1], (\mathcal{Y}, \tau_2)$ are metric topologies, then this definition agrees with the metric definition of continuity.

Prop 2.9: $(\mathcal{X}, \tau_1), (\mathcal{Y}, \tau_2), (\mathcal{Z}, \tau_3)$

$f : \mathcal{X} \to \mathcal{Y}, g : \mathcal{Y} \to \mathcal{Z}$

both c, f
then \[g \circ f : X \to \mathbb{R} \text{ is continuous.} \]

Proof: Exercise.

From here on, we will write \((\overline{X}, \overline{\mathcal{C}})\) or \(\overline{X}\). etc.

Prop 2.10: \(f : \overline{X} \to Y \) is continuous if and only if \(f^{-1}(C) \) is closed for all closed \(C \subseteq Y \).

Examples 2.11: Let \(X \) be a set with the discrete metric. Then every subset is open (since \(\{ x \} = B(x; \frac{1}{2}) \), every subset contains a ball around every point).

Let \(f : \overline{X} \to Y \) be a
function from \bar{X} to a top. sp. Y
Then f is c'13.

(the discrete topology)

Example 2.12: Let Y be equipped with the indiscrete topology, let \bar{X} be a topological space & $f: \bar{X} \to Y$
a function. Then $f^{-1}(\emptyset) = \emptyset$
\forall $y \in Y$ & $f^{-1}(\{y\}) = \{x \in \bar{X} | f(x) = y\}$ open

\Rightarrow f is c'13

Example 2.13: $id_{\bar{X}}$ is continuous.

More concepts for topologies

Let (\bar{X}, τ) denote a topological space throughout.
Definition 2.15: If \(A \subseteq \bar{X} \), we may endow \(A \) with the *subspace topology* \(\tau|_A = \{ U \subseteq A \mid U \in \tau, \forall A \in \tau \} \).

Observation 2.14: The inclusion map \(i : A \rightarrow \bar{X} \) is continuous, \(\tau|_A \) is the coarsest topology for which \(i \) is continuous.
Definition 2.16: Suppose $A \subseteq \mathbb{X}$.
Define the closure of A, \overline{A}, as the intersection $\bigcap C_i$ of all closed sets containing A.

Prop 2.16: Closure has the following prop.
- \overline{A} is closed, $A \subseteq \overline{A}$
- If A is closed, $\overline{A} = A$.
- In particular $\overline{\overline{A}} = \overline{A}$.
- If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.

Proof: \overline{A} is the intersection of a family of closed sets, and is therefore closed.
- $A \subseteq \overline{A}$ is obvious from the def.
- If A is closed then $\overline{A} = A$.
\[\Rightarrow A = A \]

- If \(A \subseteq B \) then every closed set containing \(B \) contains \(A \)

\[\bigcap C \subseteq \bigcap C \]
contains \(A \)
contains \(B \) & \(A \)
intersection of a subfamily \(D \)

The dual concept of closure is that of interior.

Def 2.17 \(\text{Int}(A) \) or \(A^o \) is the union of all open sets contained in \(A \).

\[2.18 \text{ Int} \left(\text{Int}(A) \right) = \text{Int}(A) \]
\[\text{Int}(A) \text{ is open} / \text{Int of open } A \text{ is } A \text{ again.} \]
\[\bar{X} - \text{Int}(\bar{X} - A) = \overline{A} \]
\[\bar{X} - \overline{X - A} = \text{Int}(A) \]

2.19. **Defn | \(\partial A \), the boundary of \(A \), is \(\overline{A} - \text{Int}(A) \)**

Any space \(A \subseteq \bar{X} \) breaks \(\bar{X} \) into three parts

\[\begin{array}{c}
\text{Int} A \\
\hline
\partial A \\
\text{Int} A
\end{array} \]

\[\bar{X} - \overline{A} = \text{Int}(\bar{X} - A) \]

Arg 2.20. If \(A \) is a set \(\subseteq \bar{X} \), then
\[a \in \text{Int}(A) \iff \text{an open set } a \in U \subseteq A. \]

\[a \in \overline{A} \iff \text{any open sets } U \ni a, \ U \cap A \neq \emptyset \]
\[\implies a \in \partial A \iff \text{any open sets } U \ni a, \ U \cap A \neq \emptyset \land U \cap (\overline{X} - A) = \emptyset. \]

Prove \text{ Interior, then \gamma.}

2.21: Notation: an \textit{(open)} neighborhood of \(x \in \overline{X} \) is an open set \(U \ni a. \)

(To save people's blood means a set containing an open noof.)
Base of subbase, generally topology

Def: 2.22 A basis for a topology \mathfrak{X} is a set \mathcal{B} of open sets of $(\mathfrak{X}, \mathcal{O})$ s.t.

\forall open U, $\forall \ x \in U$, $\exists \ B \in \mathcal{B}$ s.t. $x \in B \subseteq U$.

Balls $B(x, \varepsilon)$ form a basis for a metric topology.

$U = \bigcup_{x \in U} B(x)$
$x \in U$

Def 2.25] We say $\mathcal{B} \subseteq \mathcal{T}$ is a subbasis for a topology \mathcal{T} if for every $U \in \mathcal{T} \& x \in U$

$\exists \{S_1, S_2, \ldots, S_n\} \in \mathcal{B}^* \& x \in (S_1 \cap S_2 \cap \ldots \cap S_n) \subseteq U$.

i.e., finite intersections of sets in \mathcal{B} form a basis.
Note 2.26) If \(U \) is open in \(\mathbb{R} \) and \(S \) is a subbasis, then for any \(x \in \mathbb{R} \) are only \(S(\{x\})_1, \ldots, S(\{x\})_n \)

s.t. \(x \in S(\{x\})_1 \land \ldots \land S(\{x\})_n \subseteq U \)

Then \(U = \bigcup_{x \in U} \left(\bigcap_{i=1}^{n} \{x\}_i \right) \)

so \(U \) is a union of finite intersections.

Conversely, any such \(U \) must be open. Therefore, the subbasis determines the topology.

Every basis is a subbasis.
Prop 2.26] Suppose \(D \) is a special basis for a topology on \(X \) and \(f : Y \rightarrow X \) is a function from a top sp. \(Y \) to \(X \). Then:

\(f^{-1}(D) \) is open \(\forall S \subseteq D \)

if \(f \) is c'fs.

Proof: We make use of the following observables:

\[f^{-1}(\bigcup W_i) = \bigcup f^{-1}(W_i) \]
\[f^{-1} \left(\bigcup W_i \right) = \bigcup f^{-1}(W_i) \]

for families of subsets of \(Y \).

We can write open sets \(U \subseteq \mathbb{R} \) as

\[U = \bigcup_{s \in S} \cap \text{finite} \]

\[f^{-1}(U) = \bigcup_{s \in S} \cap f^{-1}(s) \]

so \(f^{-1}(U) \) is open.
Theorem 2.27: If \(\{ T_i \} \) is a family of topologies on \(X \), then \(\bigcup T_i \) is a topology. (easy proof)

This implies that given any set \(S \subseteq \mathcal{P}(X) \), there is a coarsest topology on \(X \) such that the sets in \(S \) are all among the open sets.

Note:
Prop 2.28: If \(S \subseteq \mathcal{X} \), then
define \(\tau(S) \) to be the set of all
unions of finite intersections of sets in \(S \).
Including \(\emptyset, \mathcal{X} \). Then \(\tau(S) \) is
the coarsest topology on \(\mathcal{X} \) containing \(S
\) (in particular, it is a topology), and
Moreover, \(S \) is a subbasis for \(\tau(S) \).
Proof: set $\sigma_1 \cap (\bigcup (\bigcap S_{j_i})) = U$

the only thing to check is finite intersections of these are again of this form, but identify \bigcap as the topology. Plainly these sets must be open in any topology. The sets S are open. Finally, given any $x \in U$ where U is open in $\tau_1(\sigma_1)$, $x \in U(\bigcup S_{j_i}) = U$.

$= \exists$ some S_1, \ldots, S_n s.t.
$x \in (S_1 \cup \ldots \cup S_n) \leq U$.

Example 2.29: We can now make a huge range of topological spaces by specifying a set \mathcal{S} and a subbasis $\mathcal{B} \subset \mathcal{P}(\mathcal{S})$.

Then $\tau(\mathcal{B})$ is the set of all unions of finite intersections of sets in \mathcal{B}. For instance, define (\mathbb{R}, τ) to be the topology generated by left-half-open intervals $(a, b]$ (in fact, since $(a, b] \cap (c, d]$ is again half-open, this collec...
of sets forms a base for a topology.

Since one may write

\[(a, b) = \bigcup_{n \in \mathbb{N}} (a, b - \frac{1}{n}) ,\]

it follows that the 'open intervals' are open sets for the half-open topology \((\mathbb{R}, \mathcal{T}_e)\)

\[\Rightarrow (\mathbb{R}, 1.1) \xrightarrow{id} (\mathbb{R}, 1.1)\]

continuous by prop 2.26.

ordinary tp

basis of open intervals \((a - \varepsilon, a + \varepsilon)\)

\[\left(\mathbb{R}, 1.1\right) \xrightarrow{id} (\mathbb{R}, \mathcal{T}_e)\]