Chapter 4

Urysohn’s Lemma

16 Urysohn’s Lemma

Suppose X is a topological space and suppose that for any two disjoint closed sets $C_0, C_1 \subseteq X$ we can find a continuous $f : X \to \mathbb{R}$ such that $f|_{C_0} \equiv 0$ and $f|_{C_1} \equiv 1$. Then $f^{-1}(-\infty, 1/2)$ and $f^{-1}(1/2, \infty)$ give us two open sets that separate C_0 and C_1. This implies X is normal.

Theorem 16.1 (Urysohn’s Lemma). Suppose X is a normal topological space and that C_0 and C_1 are disjoint closed sets in X. Then there exists a continuous function $f : X \to [0,1]$ such that $f(C_0) \subseteq [0,0)$ and $f(C_1) \subseteq [1,1]$.

Proof. Use normality to produce a nested sequence of open sets U_d, one for each dyadic rational $d = a/2^n$ in $[0,1] \cap \mathbb{Q}$, such that $C_0 \subseteq U_0$ and $C_1 \subseteq X \setminus \overline{U_1}$, and such that $d < d'$ implies $\overline{U_d} \subseteq U_{d'}$. Then define $f : X \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \notin U_1 \\ \inf_{x \in U_d} d & \text{otherwise} \end{cases}$$

To prove the function f is continuous, let $x \in X$, and fix $\epsilon > 0$. Write $t = f(x)$. We want to find an open neighbourhood V of x such that $f(V) \subseteq (t - \epsilon, t + \epsilon)$. The cases of $t = 0$ and $t = 1$ are exceptional. If $t = 0$, then we can find some $d < \epsilon$ such that $x \in U_d$. Then $U_d = V$ works. If $t = 1$, then we can find $d > 1 - \epsilon$ such that $x \notin \overline{U_d}$. Then $X \setminus \overline{U_d}$ works. Therefore assume $t \in (0,1)$.

We can find some diadic numbers $d_1 > d_2 > t - \epsilon$ such that $x \notin U_{d_1} \supseteq U_{d_2}$. We can also find $d_3 < t + \epsilon$ such that $x \in U_{d_3}$. Then consider $V = U_{d_1} \setminus \overline{U_{d_3}}$. This is an open set containing x, and $f(V) \subseteq [d_2, d_3] \subseteq (t - \epsilon, t + \epsilon)$.

So f is continuous.

Example 16.2. Let X be an uncountable space and let $p \in X$ be a point. Define the fortissimo topology on X as follows: a subset $C \subseteq X$ is closed if $p \in C$ or if C is countable.

We claim this space is normal. Two disjoint closed sets consist of two disjoint countable subsets neither containing p, or one countable subset and one subset containing p. In the first case, the sets are also open since their complements contain p. In the second, the countable set not containing p is open, and its complement is also open.

Therefore Urysohn’s lemma applies to X. On the other hand, consider a continuous function $f : X \to \mathbb{R}$ such that $f(p) = 0$. Note that $\{p\}$ itself is a closed point. The sets $U_n = f^{-1}((-1/n, 1/n))$ form a countable
CHAPTER 4. URI SOHN’S LEMMA

nested family of open sets in X, each containing p. Therefore each U_n is cocountable. It follows that $f^{-1}(0) = \cap_{n=1}^{\infty} U_n$ is also cocountable, so that in particular, the closed set $\{p\}$ cannot be expressed $f^{-1}(0)$ for any continuous $f : X \to \mathbb{R}$.

Definition 16.3. If X is a topological space, a G_δ-set is any subset of X that can be written as an intersection of countably many open subsets.

Definition 16.4. A G_δ-space is a topological space X in which every closed subset is a G_δ-set. A space X is perfectly normal if it is normal and a G_δ-space.

Exercise 16.5. A space X is perfectly normal if and only if every closed set C is the zero set of a continuous function $f : X \to \mathbb{R}$.

17 Tietze Extension

Theorem 17.1 (Tietze Extension). Let X be a normal topological space, let $C \subseteq X$ be a closed subspace and let $f : C \to [-1,1]$ be a continuous function. Then there exists a continuous function $F : X \to [-1,1]$ such that $F(c) = f(c)$ for all $c \in C$.

Remark 17.2. Of course, the role of $[-1,1]$ can be played by any nontrivial closed interval.

Proof. The idea is to produce a sequence of continuous functions $f_n : X \to [-1,1]$ approximating f on C.

Lemma 17.3. For any $r > 0$, and any continuous function $h : C \to [-r,r]$, there exists a continuous extension $g : X \to [-r/3,r/3]$ such that $|g(a) - h(a)| \leq 2r/3$.

Proof. Divide the interval $[-r,r]$ into three equal thirds by closed subintervals: $I_1 \cup I_2 \cup I_3$. Let $C_1 = h^{-1}(I_1)$ and $C_2 = h^{-1}(I_3)$. By Urysohn’s lemma, we can make a continuous function $g : X \to [-r/3,r/3]$ that takes the value $-r/3$ on C_1 and $r/3$ on C_2. This g has the required property.

Now, the original f satisfies the hypotheses of the lemma with $r = 1$. Define $g_1 : X \to [-1/3,1/3]$ from the lemma. Set $s_1 = g_1$. Now apply the lemma to $f - s_1$, now with $r = 2/3$, to get g_2. Apply the lemma to $f - s_2$ with $r = 4/9$ to get g_3 and thus s_3 and so on.

Now we have produced an infinite sequence of functions $g_n : X \to [-2^{n-1}/3^n,2^{n-1}/3^n]$. By an easy calculus argument (comparison with a geometric series), the sequence

$$F(x) = \sum_{i=1}^{\infty} g_i(x) = \lim_{n \to \infty} s_n(x)$$

converges for all $x \in X$.

A little bit of estimation shows that if $n > m$, then $|s_n(x) - s_m(x)| < (2/3)^m$. In particular, $(s_n(x)) \to F(x)$ uniformly, which is sufficient to prove that $F(x)$ is continuous.

For any $c \in C$, we know that

$$|f(c) - s_n(c)| \leq (2/3)^n$$

so that $f(c) = \lim_{n \to \infty} s_n(c) = F(c)$.

The same estimation as before shows that F takes values in $[-1,1]$.

\[\square\]
Lemma 17.4. Let X be a normal topological space and let C be a closed subspace. Suppose $f: C \to \mathbb{R}$ is a continuous function, then there exists a continuous function $F: X \to \mathbb{R}$ such that $F(c) = f(c)$ for all $c \in C$.

Proof. Take a homeomorphism $h: \mathbb{R} \to (-1, 1)$. By composing with h, we can find $F': X \to [-1, 1]$ such that $F'|_C = h \circ f$. Let J denote the set of points $x \in X$ such that $|F'(x)| = 1$—these points prevent us from applying h^{-1}, so we’ll get rid of them. The set J is closed and disjoint from C. By Urysohn’s lemma, we can find a continuous $\chi: X \to [0, 1]$ that takes the value 0 on J and 1 on C. The function $x \mapsto \chi(x)F'(x)$ is continuous, and takes values in $(-1, 1)$. Consider $F = h^{-1} \circ (\chi F')$. This has all the properties we asked for. □