
Math 426
Midterm

19 October 2022

There are 4 problems worth a total of 36 points. Answer as many as you can.
Here is a guide to the problems:

1. (12 pts) Basic definitions in topology.

2. (8 pts) Connectivity.

3. (12 pts) Compactifications and quotient spaces.

4. (4 pts) Connectivity and products.

1. We say a topological space X is irreducible if X cannot be written as the union of two proper
closed subsets. A subspace of A ⊆ Y of a topological space is said to be irreducible if it is irreducible
in the subspace topology.

2pts (a) Let X be a topological space and let x ∈ X . Prove that {x} is an irreducible subspace.

4pts (b) A topological space X is said to be sober if the function

j : X → nonempty irreducible closed subsets of X

given by j (x) = {x} is a bijection. Prove that all Hausdorff spaces are sober.

3pts (c) Let X be a set and x ∈ X a point. The particular-point topology on X is defined as follows: a
nonempty subset U of X is open if and only if U 3 x. The empty set is also open. You do not
have to show this is a topology.

Prove that the particular-point topology is irreducible.

3 pts (d) Prove that the particular-point topology is sober.

(a) If {x} is written as a union of two closed subsets C ,D , then at least one of the two must contain x
itself, and therefore must contain the closure {x}. Therefore at least one of C ,D cannot be a proper
subspace.

(b) First, we show j is injective. Since X is Hausdorff, singleton subsets are closed, and therefore {x} =
{x}. Consequently, if j (x) = j (y), then {x} = {y}, i.e., x = y .

Second, we show j is surjective. Let C be an irreducible closed subset of X . We claim that C is a
singleton {x}, which is in the image of j . Suppose for the sake of contradiction that x 6= y are two
points in C , then we can find disjoint open subsets U 3 x and V 3 y , whereupon C \ V and C \U
are closed subsets of C , the first containing x and the second containing y . Furthermore, their
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union is C \ (U ∩V ) = C . We have found a cover of C by proper closed subsets, contradicting the
irreducibility of C .

Since the irreducible closed subsets of X are singletons, the function j is surjective.

(c) Write X as a union of two closed subsets X =C∪D . At least one of these must contain the particular
point x, but the only closed subset that contains x is X itself. Therefore X cannot be written as a
union of two proper closed subsets.

(d) Every subset of X not containing x is closed. If C is an irreducible nonempty closed subset not
containing x, and if y is an element of C , the decomposition C = (C \ {y})∪ {y} shows that C = {y} =
j (y). On the other hand, if C is an irreducible closed subset containing x, then C ⊃ {x} = X = j (x).

We see that j is indeed bijective, as required.
ä

2. Let p = (0,1) ∈ R2 and q = (0,−1) ∈ R2. Let N = {1,1/2,1/3,1/4, . . . }. Let X denote the following
subset of R2:

X = N × [−1,1]∪ {p, q}.

4 pts (a) Determine, with proof, the connected components of X ;

4 pts (b) Suppose f : X → {0,1} is a continuous function. Show that f (p) = f (q), even though {p, q} is
not connected.

(a) Write An for {1/n}×[−1,1]. Observe that each An is the image of [−1,1] under a continuous map to
R2, and each An is therefore connected. Consider the intersection of (1/n−ε,1/n+ε)× [−1,1] with
X . For sufficiently small values of ε, this is precisely An , so An is open in X . Similarly, considering
[1/n − ε,1/n + ε]× [−1,1]∩ X , we see that each An is closed in X . Therefore no proper superset of
An can be connected, and An is a connected component.

Since connected components form a partition of the space, it remains to determine the decompo-
sition of {p, q} into connected components, but this set is discrete and therefore disconnected. The
components are {p}, {q}.

(b) Any such continuous function must be constant on connected components. Suppose without loss
of generality that f (p) = 1. Take the sequence (1/n,1)n in X . This sequence converges to p and
so f ((1/n,1))n → f (p) = 1. Therefore for some tail of this sequence f ((1/n,1))n ≡ 1. Since f is
constant on the An , it follows that f ((1/n,−1)) ≡ 1, and so f (q) = limn→∞ f ((1/n,−1)) = 1 as well.

ä
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3. Recall that a continuous function j : A → B is a compactification if j is an embedding, the
image of j is dense in B , and B is compact.

Suppose X , Y and X ×Y are non-compact locally compact Hausdorff spaces (it is sufficient to
assume X and Y have these properties).

Let X ∪ {∞X }, Y ∪ {∞Y } and (X ×Y )∪ {∞} denote the one-point compactifications of X , Y and
X ×Y respectively. To keep the notation simple, we write X̂ , Ŷ and �X ×Y for these compactifications.

4pts (a) Prove that the inclusion i : X ×Y → X̂ × Ŷ is continuous and open.

2pts (b) Prove that i is a compactification.

2pts (c) Prove that the function f : X̂ × Ŷ → �X ×Y given by

f (x, y) = (x, y) ∀(x, y ∈ X ×Y

and
f (∞X , y) = f (x,∞Y ) = f (∞X ,∞Y ) =∞ ∀x ∈, ∀y ∈ Y

is continuous. Possible hint: the one-point compactification has a universal property among
Hausdorff compactifications of locally compact Hausdorff spaces.

4 pts (d) Prove that the spaces

�X ×Y and
X̂ × Ŷ(

X̂ × {∞Y }
)∪ (

{∞X }× Ŷ
)

are homeomorphic.

(a) For continuity, we use the fact that the inclusions X → X̂ and Y → Ŷ are continuous, so that the
product X ×Y → X̂ × Ŷ is continuous.

For openness: it suffices to prove that the image of a basic open set U ×V ⊂ X ×Y is open in X̂ × Ŷ ,
by Proposition 1.36 in the notes. The image of U ×V in X̂ × Ŷ is a basic open, however, so this is
trivial.

(b) Since X̂ and Ŷ are compact, X̂ × Ŷ is compact. We must show that X ×Y is dense in X̂ × Ŷ . From
Homework 2, we know that X ×Y = X×Y , the closures being taken in X̂×Ŷ or X̂ and Ŷ respectively.
Since X = X̂ and Y = Ŷ , this completes the proof.

(c) This is almost immediate using the universal property of the one-point compactification. We know
that X̂ × Ŷ is a compactification of X ×Y (proved in the previous two parts of this question) and
we know that X̂ × Ŷ is Hausdorff since products of Hausdorff spaces are Hausdorff. The one-point
compactification is universal among all Hausdorff compactifications of noncompact locally com-
pact Hausdorff spaces, by Proposition 3.43 in the notes.

3



(d) Write X̂ ∧ Ŷ for the quotient space in this question. From the previous part of this question, we
know that there is a continuous function X̂ × Ŷ → �X ×Y . This function is surjective, but not injec-
tive, because all the points in

(
X̂ × {∞Y }

)∪ (
{∞X }× Ŷ

)
are mapped to ∞. By the universal property

of the quotient, there is an induced continuous function X̂ ∧ Ŷ → �X ×Y . This function is bijec-
tive, and has compact source and Hausdorff target (since X ×Y is locally compact). Therefore this
function is a homeomorphism.

ä

4. (4 pts) Suppose {Xi }i∈I is a set of connected spaces, and suppose Xi 6= ; for all i ∈ I . Prove that∏
i∈I Xi is connected.

Proof. Write X for the product, and let f : X → {0,1} be a continuous function. Let x = (xi )i∈I be a point in
X (the assertion that such a point exists for general I relies on the axiom of choice), and suppose f (x) = 1.

We claim that if y differs from x only in finitely many coordinates, then f (y) = 1 as well. We prove
this by induction on the number of coordinates in which x and y differ. The base case is x = y , which is
trivial. For the induction step, we may assume that x and y agree in every coordinate except one, the j -th
coordinate. That is x, y lie in the image of a continuous map

s : X j → X

given by sending z j to the element that agrees with x and y in every coordinate except the j -th coordinate
and is z j in the j -th coordinate. Since X j is connected, the image of s(X j ) is connected, so f (x) = f (y).
This proves the claim.

Now suppose for the sake of contradiction that there is some y ′ ∈ X such that f (y ′) = 0. Then the set
f −1(0) of such y ′s is nonempty and open, and therefore contains a basic open set:⋂

j∈J , J finite
proj−1

j (U j )

where U j ⊂ X j are open sets. In particular, we can find a point y ∈ f −1(0) that agrees with x in all coor-
dinates except the finitely many coordinates in J . This contradicts the previous part of this proof, so no
such y ′ exists.
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