Math 426
Midterm
19 October 2022

There are 4 problems worth a total of 36 points. Answer as many as you can.
Here is a guide to the problems:

1. (12 pts) Basic definitions in topology.

2. (8 pts) Connectivity.

w

. (12 pts) Compactifications and quotient spaces.

4. (4 pts) Connectivity and products.

1. We say a topological space X is irreducible if X cannot be written as the union of two proper
closed subsets. A subspace of A< Y of a topological space is said to be irreducible if it is irreducible
in the subspace topology.

2pts (a) Let X be a topological space and let x € X. Prove that {x} is an irreducible subspace.

4pts (b) A topological space X is said to be sober if the function
j : X — nonempty irreducible closed subsets of X

given by j(x) = {x} is a bijection. Prove that all Hausdorff spaces are sober.

3pts (c) Let X be a set and x € X a point. The particular-point topology on X is defined as follows: a
nonempty subset U of X is open if and only if U 3 x. The empty set is also open. You do not
have to show this is a topology.

Prove that the particular-point topology is irreducible.

3 pts (d) Prove that the particular-point topology is sober.

(a) If {x} is written as a union of two closed subsets C, D, then at least one of the two must contain x
itself, and therefore must contain the closure {x}. Therefore at least one of C, D cannot be a proper
subspace.

(b) First, we show j is injective. Since X is Hausdorff, singleton subsets are closed, and therefore xf =
{x}. Consequently, if j(x) = j(y), then {x} = {y},i.e.,, x=y.

Second, we show j is surjective. Let C be an irreducible closed subset of X. We claim that C is a
singleton {x}, which is in the image of j. Suppose for the sake of contradiction that x # y are two
points in C, then we can find disjoint open subsets U 3 x and V 3 y, whereupon C\ V and C\ U
are closed subsets of C, the first containing x and the second containing y. Furthermore, their



union is C\ (UnN V) = C. We have found a cover of C by proper closed subsets, contradicting the
irreducibility of C.

Since the irreducible closed subsets of X are singletons, the function j is surjective.

(c) Write X as a union of two closed subsets X = CuD. Atleast one of these must contain the particular
point x, but the only closed subset that contains x is X itself. Therefore X cannot be written as a
union of two proper closed subsets.

(d) Every subset of X not containing x is closed. If C is an irreducible nonempty closed subset not
containing x, and if y is an element of C, the decomposition C = (C\ {y}) U {y} shows that C = {y} =
Jj (). On the other hand, if C is an irreducible closed subset containing x, then C o {x} = X = j(x).

We see that j is indeed bijective, as required.

2. Letp=(0,1) € R? and qg=(0,-1)€ R%. Let N={1,1/2,1/3,1/4,...}. Let X denote the following
subset of R%:
X=Nx[-1,11u{p,q}.

4 pts (a) Determine, with proof, the connected components of X;

4 pts (b) Suppose f: X — {0,1} is a continuous function. Show that f(p) = f(g), even though {p, g} is
not connected.

(a) Write A, for {1/n} x [-1,1]. Observe that each A, is the image of [-1, 1] under a continuous map to
R?2, and each A,, is therefore connected. Consider the intersection of (1/n—¢,1/n+e¢) x [-1, 1] with
X. For sufficiently small values of ¢, this is precisely A, so A, is open in X. Similarly, considering
[1/n—e¢,1/n+¢€] x [-1,1] N X, we see that each Aj is closed in X. Therefore no proper superset of
A, can be connected, and A, is a connected component.

Since connected components form a partition of the space, it remains to determine the decompo-
sition of {p, g} into connected components, but this set is discrete and therefore disconnected. The
components are {p}, {g}.

(b) Any such continuous function must be constant on connected components. Suppose without loss
of generality that f(p) = 1. Take the sequence (1/n,1), in X. This sequence converges to p and
so f((1/n,1)), — f(p) = 1. Therefore for some tail of this sequence f((1/n,1)), = 1. Since f is
constant on the Ay, it follows that f((1/n,—-1)) =1, and so f(q) =lim;_ f((1/n,-1)) =1 as well.

m}



3. Recall that a continuous function j : A — B is a compactification if j is an embedding, the
image of j is dense in B, and B is compact.

Suppose X, Y and X x Y are non-compact locally compact Hausdorff spaces (it is sufficient to
assume X and Y have these properties).

Let X U {oox}, Y U{ooy} and (X x Y) U {oo} denote the one-point compactifications of X, Y and
X x Y respectively. To keep the notation simple, we write X, ¥ and X x Y for these compactifications.

4pts (a) Prove that the inclusioni: X x Y — X x Y is continuous and open.
2pts (b) Prove that i is a compactification.

2pts (c) Prove that the function f: X x ¥ — X x Y given by

fey =y YxyeXxY
and
f(oony)Zf(XyOOy)Zf(OOX,wy):oo VXE, VyEY

is continuous. Possible hint: the one-point compactification has a universal property among
Hausdorff compactifications of locally compact Hausdorff spaces.

4 pts (d) Prove that the spaces

x Y
U ({oox} x Y)

N

XxY and -
(X x ooy

~—

are homeomorphic.

(a) For continuity, we use the fact that the inclusions X — X and Y — ¥ are continuous, so that the
product X x Y — X x Y is continuous.

For openness: it suffices to prove that the image of a basic open set U x V < X x Y is openin X x ¥,
by Proposition 1.36 in the notes. The image of U x V in X x Y is a basic open, however, so this is
trivial.

(b) Since X and Y are compact, X x ¥ is compact. We must show that X x Y is dense in X x Y. From
Homework 2, we know that X x Y = X x Y, the closures being taken in X x ¥ or X and Y respectively.
Since X = X and Y = ¥, this completes the proof.

(c) Thisis almost immediate using the universal property of the one-point compactification. We know
that X x ¥ is a compactification of X x Y (proved in the previous two parts of this question) and
we know that X x ¥ is Hausdorff since products of Hausdorff spaces are Hausdorff. The one-point
compactification is universal among all Hausdorff compactifications of noncompact locally com-
pact Hausdorff spaces, by Proposition 3.43 in the notes.



(d) Write X A ¥ for the quotient space in this question. From the previous part of this question, we
know that there is a continuous function X x ¥ — X x Y. This function is surjective, but not injec-
tive, because all the points in (X x {ooy}) U (foox} x V) are mapped to co. By the universal property
of the quotient, there is an induced continuous function X A ¥ — X x Y. This function is bijec-
tive, and has compact source and Hausdorff target (since X x Y is locally compact). Therefore this
function is a homeomorphism.

4. (4 pts) Suppose {X;};c1 is a set of connected spaces, and suppose X; # @ for all i € I. Prove that
[1;e7 X; is connected.

Proof. Write X for the product, andlet f : X — {0, 1} be a continuous function. Let x = (x;) ;e be a pointin
X (the assertion that such a point exists for general I relies on the axiom of choice), and suppose f(x) = 1.

We claim that if y differs from x only in finitely many coordinates, then f(y) = 1 as well. We prove
this by induction on the number of coordinates in which x and y differ. The base case is x = y, which is
trivial. For the induction step, we may assume that x and y agree in every coordinate except one, the j-th
coordinate. That is x, y lie in the image of a continuous map

s:Xj—>X

given by sending z; to the element that agrees with x and y in every coordinate except the j-th coordinate
and is z; in the j-th coordinate. Since X; is connected, the image of s(X;) is connected, so f(x) = f ().
This proves the claim.

Now suppose for the sake of contradiction that there is some y’ € X such that f(y') = 0. Then the set
£71(0) of such y's is nonempty and open, and therefore contains a basic open set:

N proj]fl(Uj)
jeJ,J finite

where U;  X; are open sets. In particular, we can find a point y € f ~1(0) that agrees with x in all coor-
dinates except the finitely many coordinates in J. This contradicts the previous part of this proof, so no
such y’ exists. O



