There are 4 problems worth a total of 36 points. Answer as many as you can.
Here is a guide to the problems:

1. (12 pts) Basic definitions in topology.
2. (8 pts) Connectivity.
3. (12 pts) Compactifications and quotient spaces.
4. (4 pts) Connectivity and products.
5. We say a topological space X is irreducible if X cannot be written as the union of two proper closed subsets. A subspace of $A \subseteq Y$ of a topological space is said to be irreducible if it is irreducible in the subspace topology.

2pts (a) Let X be a topological space and let $x \in X$. Prove that $\overline{\{x\}}$ is an irreducible subspace.
4 pts (b) A topological space X is said to be sober if the function

$$
j: X \rightarrow \text { nonempty irreducible closed subsets of } X
$$

given by $j(x)=\overline{\{x\}}$ is a bijection. Prove that all Hausdorff spaces are sober.
3pts (c) Let X be a set and $x \in X$ a point. The particular-point topology on X is defined as follows: a nonempty subset U of X is open if and only if $U \ni x$. The empty set is also open. You do not have to show this is a topology.
Prove that the particular-point topology is irreducible.
3 pts (d) Prove that the particular-point topology is sober.
(a) If $\overline{\{x\}}$ is written as a union of two closed subsets C, D, then at least one of the two must contain x itself, and therefore must contain the closure $\overline{\{x\}}$. Therefore at least one of C, D cannot be a proper subspace.
(b) First, we show j is injective. Since X is Hausdorff, singleton subsets are closed, and therefore $\overline{\{x\}}=$ $\{x\}$. Consequently, if $j(x)=j(y)$, then $\{x\}=\{y\}$, i.e., $x=y$.

Second, we show j is surjective. Let C be an irreducible closed subset of X. We claim that C is a singleton $\{x\}$, which is in the image of j. Suppose for the sake of contradiction that $x \neq y$ are two points in C, then we can find disjoint open subsets $U \ni x$ and $V \ni y$, whereupon $C \backslash V$ and $C \backslash U$ are closed subsets of C, the first containing x and the second containing y. Furthermore, their
union is $C \backslash(U \cap V)=C$. We have found a cover of C by proper closed subsets, contradicting the irreducibility of C.

Since the irreducible closed subsets of X are singletons, the function j is surjective.
(c) Write X as a union of two closed subsets $X=C \cup D$. At least one of these must contain the particular point x, but the only closed subset that contains x is X itself. Therefore X cannot be written as a union of two proper closed subsets.
(d) Every subset of X not containing x is closed. If C is an irreducible nonempty closed subset not containing x, and if y is an element of C, the decomposition $C=(C \backslash\{y\}) \cup\{y\}$ shows that $C=\{y\}=$ $j(y)$. On the other hand, if C is an irreducible closed subset containing x, then $C \supset \overline{\{x\}}=X=j(x)$. We see that j is indeed bijective, as required.
2. Let $p=(0,1) \in \mathbf{R}^{2}$ and $q=(0,-1) \in \mathbf{R}^{2}$. Let $N=\{1,1 / 2,1 / 3,1 / 4, \ldots\}$. Let X denote the following subset of \mathbf{R}^{2} :

$$
X=N \times[-1,1] \cup\{p, q\} .
$$

4 pts (a) Determine, with proof, the connected components of X;
4 pts (b) Suppose $f: X \rightarrow\{0,1\}$ is a continuous function. Show that $f(p)=f(q)$, even though $\{p, q\}$ is not connected.
(a) Write A_{n} for $\{1 / n\} \times[-1,1]$. Observe that each A_{n} is the image of $[-1,1]$ under a continuous map to \mathbf{R}^{2}, and each A_{n} is therefore connected. Consider the intersection of $(1 / n-\epsilon, 1 / n+\epsilon) \times[-1,1]$ with X. For sufficiently small values of ϵ, this is precisely A_{n}, so A_{n} is open in X. Similarly, considering $[1 / n-\epsilon, 1 / n+\epsilon] \times[-1,1] \cap X$, we see that each A_{n} is closed in X. Therefore no proper superset of A_{n} can be connected, and A_{n} is a connected component.
Since connected components form a partition of the space, it remains to determine the decomposition of $\{p, q\}$ into connected components, but this set is discrete and therefore disconnected. The components are $\{p\},\{q\}$.
(b) Any such continuous function must be constant on connected components. Suppose without loss of generality that $f(p)=1$. Take the sequence $(1 / n, 1)_{n}$ in X. This sequence converges to p and so $f((1 / n, 1))_{n} \rightarrow f(p)=1$. Therefore for some tail of this sequence $f((1 / n, 1))_{n} \equiv 1$. Since f is constant on the A_{n}, it follows that $f((1 / n,-1)) \equiv 1$, and so $f(q)=\lim _{n \rightarrow \infty} f((1 / n,-1))=1$ as well.
3. Recall that a continuous function $j: A \rightarrow B$ is a compactification if j is an embedding, the image of j is dense in B, and B is compact.

Suppose X, Y and $X \times Y$ are non-compact locally compact Hausdorff spaces (it is sufficient to assume X and Y have these properties).

Let $X \cup\left\{\infty_{X}\right\}, Y \cup\left\{\infty_{Y}\right\}$ and $(X \times Y) \cup\{\infty\}$ denote the one-point compactifications of X, Y and $X \times Y$ respectively. To keep the notation simple, we write \hat{X}, \hat{Y} and $\widehat{X \times Y}$ for these compactifications.

4pts (a) Prove that the inclusion $i: X \times Y \rightarrow \hat{X} \times \hat{Y}$ is continuous and open.
2 pts (b) Prove that i is a compactification.
2pts (c) Prove that the function $f: \hat{X} \times \hat{Y} \rightarrow \widehat{X \times Y}$ given by

$$
f(x, y)=(x, y) \quad \forall(x, y \in X \times Y
$$

and

$$
f\left(\infty_{X}, y\right)=f\left(x, \infty_{Y}\right)=f\left(\infty_{X}, \infty_{Y}\right)=\infty \quad \forall x \in, \forall y \in Y
$$

is continuous. Possible hint: the one-point compactification has a universal property among Hausdorff compactifications of locally compact Hausdorff spaces.

4 pts (d) Prove that the spaces

$$
\widehat{X \times Y} \quad \text { and } \quad \frac{\hat{X} \times \hat{Y}}{\left(\hat{X} \times\left\{\infty_{Y}\right\}\right) \cup\left(\left\{\infty_{X}\right\} \times \hat{Y}\right)}
$$

are homeomorphic.
(a) For continuity, we use the fact that the inclusions $X \rightarrow \hat{X}$ and $Y \rightarrow \hat{Y}$ are continuous, so that the product $X \times Y \rightarrow \hat{X} \times \hat{Y}$ is continuous.
For openness: it suffices to prove that the image of a basic open set $U \times V \subset X \times Y$ is open in $\hat{X} \times \hat{Y}$, by Proposition 1.36 in the notes. The image of $U \times V$ in $\hat{X} \times \hat{Y}$ is a basic open, however, so this is trivial.
(b) Since \hat{X} and \hat{Y} are compact, $\hat{X} \times \hat{Y}$ is compact. We must show that $X \times Y$ is dense in $\hat{X} \times \hat{Y}$. From Homework 2, we know that $\overline{X \times Y}=\bar{X} \times \bar{Y}$, the closures being taken in $\hat{X} \times \hat{Y}$ or \hat{X} and \hat{Y} respectively. Since $\bar{X}=\hat{X}$ and $\bar{Y}=\hat{Y}$, this completes the proof.
(c) This is almost immediate using the universal property of the one-point compactification. We know that $\hat{X} \times \hat{Y}$ is a compactification of $X \times Y$ (proved in the previous two parts of this question) and we know that $\hat{X} \times \hat{Y}$ is Hausdorff since products of Hausdorff spaces are Hausdorff. The one-point compactification is universal among all Hausdorff compactifications of noncompact locally compact Hausdorff spaces, by Proposition 3.43 in the notes.
(d) Write $\hat{X} \wedge \hat{Y}$ for the quotient space in this question. From the previous part of this question, we know that there is a continuous function $\hat{X} \times \hat{Y} \rightarrow \widehat{X \times Y}$. This function is surjective, but not injective, because all the points in $\left(\hat{X} \times\left\{\infty_{Y}\right\}\right) \cup\left(\left\{\infty_{X}\right\} \times \hat{Y}\right)$ are mapped to ∞. By the universal property of the quotient, there is an induced continuous function $\hat{X} \wedge \hat{Y} \rightarrow \widehat{X \times Y}$. This function is bijective, and has compact source and Hausdorff target (since $X \times Y$ is locally compact). Therefore this function is a homeomorphism.
4. (4 pts) Suppose $\left\{X_{i}\right\}_{i \in I}$ is a set of connected spaces, and suppose $X_{i} \neq \varnothing$ for all $i \in I$. Prove that $\prod_{i \in I} X_{i}$ is connected.

Proof. Write X for the product, and let $f: X \rightarrow\{0,1\}$ be a continuous function. Let $x=\left(x_{i}\right)_{i \in I}$ be a point in X (the assertion that such a point exists for general I relies on the axiom of choice), and suppose $f(x)=1$.

We claim that if y differs from x only in finitely many coordinates, then $f(y)=1$ as well. We prove this by induction on the number of coordinates in which x and y differ. The base case is $x=y$, which is trivial. For the induction step, we may assume that x and y agree in every coordinate except one, the j-th coordinate. That is x, y lie in the image of a continuous map

$$
s: X_{j} \rightarrow X
$$

given by sending z_{j} to the element that agrees with x and y in every coordinate except the j-th coordinate and is z_{j} in the j-th coordinate. Since X_{j} is connected, the image of $s\left(X_{j}\right)$ is connected, so $f(x)=f(y)$. This proves the claim.

Now suppose for the sake of contradiction that there is some $y^{\prime} \in X$ such that $f\left(y^{\prime}\right)=0$. Then the set $f^{-1}(0)$ of such y^{\prime} s is nonempty and open, and therefore contains a basic open set:

$$
\bigcap_{j \in J, J \text { finite }} \operatorname{proj}_{j}^{-1}\left(U_{j}\right)
$$

where $U_{j} \subset X_{j}$ are open sets. In particular, we can find a point $y \in f^{-1}(0)$ that agrees with x in all coordinates except the finitely many coordinates in J. This contradicts the previous part of this proof, so no such y^{\prime} exists.

