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CHAPTER 1

Topological spaces

1. Basic definitions

DEFINITION 1.1. Let X be a set and τ⊂ P X a subset of the power set of X , i.e., τ is a set of
subsets of X . We say (X ,τ) is a topological space and τ is a topology on X if the following axioms
are satisfied:

(1) ;∈ τ and X ∈ τ.
(2) If {Ui }i∈I ⊂ τ, then

⋃
i∈I Ui ∈ τ. That is, τ is closed under taking arbitrary unions.

(3) If {Ui }n
i=1 ⊂ τ is a finite subset, then

⋂n
i=1 Ui ∈ τ. That is, τ is closed under taking finite

intersections.

NOTATION 1.2. The sets Ui ∈ τ are called open sets for the topology τ. A set C = X \U where
U is open is called closed. The closed sets satisfy a dual set of axioms:

(1) ; and X are both closed.
(2) An arbitrary intersection of closed sets is closed.
(3) A finite union of closed sets is closed.

Here are two propositions with useful facts about inverse images and images. The proofs
are routine.

PROPOSITION 1.3. Let X and Y be two sets and f : X → Y a function between them. Suppose
{Bi }i∈I is a set of subsets of Y . Then

(1) f −1(;) =; and f −1(Y ) = X ;

(2) f −1
(⋃

i∈I Bi

)
=⋃

i∈I f −1(Bi );

(3) f −1
(⋂

i∈I Bi

)
=⋂

i∈I f −1(Bi ).

PROPOSITION 1.4. Let X and Y be two sets and f : X → Y a function between them. Suppose
{Ai }i∈I is a set of subsets of X . Then

(1) f (;) =;.

(2) f
(⋃

i∈I Ai

)
=⋃

i∈I f (Ai );

(3) f
(⋂

i∈I Ai

)
⊂⋂

i∈I f (Ai ).

Observe that f (X ) = Y if and only if f is surjective. If f is injective, then the inclusion in
Proposition 1.4 (3) is actually an equality, but in general it may be a strict inclusion. For instance,
if x0, x1 are two distinct elements of X for which f (x0) = f (x1) = y , then f ({x0})∩ f ({x1}) = {y},
whereas f ({x0}∩ {x1}) = f (;) =;.
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DEFINITION 1.5. Let (X ,d) be a metric space. That is d : X ×X → [0,∞) is a metric satisfying
the usual metric axioms:

(1) d(x, y) = d(y, x)
(2) d(x, z) ≤ d(x, y)+d(y, z)
(3) d(x, y) = 0 if and only if x = y

Given a point x ∈ X and r > 0, we define the open ball around x of radius r , denoted B(x,r ) to
be {y ∈ X | d(x, y) < r }.

DEFINITION 1.6. If (X ,d) is a metric space, we can define an associated metric topology τd

on X as follows: A set U is open in the metric topology if: for any point u ∈U , there exists some
ϵ> 0, possibly depending on u, such that the ball B(u;ϵ) ⊂U .

It is an easy exercise to prove that this really is a topology as defined above.

PROPOSITION 1.7. Let B(x,r ) be an open ball in a metric space. Then B(x,r ) is an open set.

PROOF. Let y ∈ B(x,r ) be a point. We know that d(y, x) < r . Write d(y, x) = r − ϵ for some ϵ.
We claim that B(y,ϵ) ⊂ B(x,r ). Suppose z ∈ B(y,ϵ), then

d(x, z) ≤ d(x, y)+d(y, z) < r −ϵ+ϵ= r

so that z ∈ B(x,r ). □

2. Separation axioms

NOTATION 1.8. If (X ,τ) is a topological space and x ∈ X is a point, then a subset V ⊂ X
containing x is called a neighbourhood of x if there is some open set U ∋ x such that U ⊂V . The
term open neighbourhood of x means an open set containing x.

DEFINITION 1.9. A topological space (X ,τ) is T1 if all singleton subsets {x} ⊂ X are closed.

Here is an argument we use often.

PROPOSITION 1.10. A subset V in a topological space (X ,τ) is open if and only if V is a neigh-
bourhood of x (i.e., V it contains an open set having x as an element) for all x ∈V .

PROOF. In one direction, if V is open then, then it is trivially a neighbourhood of each of its
points.

In the other direction, for each x ∈ V we can find some open set Ux such that x ∈ Ux ⊂ V .
Then we can write

V = ⋃
x∈V

Ux ,

which is open. □

DEFINITION 1.11. A topological space is T2 or Hausdorff if, for any x ̸= y ∈ X , there exist
open sets U ∋ x and V ∋ y such that U ∩V =;.

REMARK 1.12. This is clearly a stronger condition than the T1 property. That is, points in
Hausdorff spaces are closed.

PROPOSITION 1.13. Every metric topology is Hausdorff.
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PROOF. Let x ̸= y be two points in a metric space. We can write d(x, y) = 2ϵ where ϵ > 0.
Then B(x,ϵ)∩B(y,ϵ) =;, by using the triangle inequality. □

EXAMPLE 1.14. Let X be set. Give X the indiscrete topology where the open sets consist only
of ; and X . If X contains at least 2 elements, then this topology is not T1 and therefore it is not
Hausdorff and therefore it is not metric.

EXAMPLE 1.15. Let X be a set and define the cofinite topology on X as follows: U ⊂ X is open
if X \U is finite or if U = ;. This always yields a topology. If x ̸= y are two elements in X , then
X \ {y} is an open set containing x but not containing y , so the topology is T1.

If X is infinite, and if U ∋ x and V ∋ Y are open neighbourhoods, then (X \U )∪ (X \ V ) is a
finite set. In particular, it is not all of X . Any z in the complement lies in both U and V , and so
U ∩V ̸= ;. Therefore, this topology is not Hausdorff (and in particular, is not metric).

EXAMPLE 1.16. A useful, if uncomplicated, topology is the discrete topology. Here every set is
open, and consequently every set is closed. It is a metric topology, being induced by the discrete
metric d(x, y) = 1 if x ̸= y for instance.

DEFINITION 1.17. A topological space X is regular if for all point p ∈ X and all closed sets
C ⊂ X \ {p}, there exists disjoint open sets U ∋ p and V ⊇C such that U ∩V =;.

REMARK 1.18. There exist Hausdorff spaces that are not regular, and there exist regular
spaces that are not Hausdorff (e.g., the indiscrete topology). A space that is both Hausdorff (T2)
and regular is called a T3-space.

DEFINITION 1.19. A topological space X is normal if, for all disjoint closed subsets C1,C2,
there exists open subsets U1 ⊃C1 and U2 ⊃C2 such that U1 ∩U2 =;.

REMARK 1.20. A Hausdorff normal space is a T4-space. Clearly, a T4-space is a T3-space.

EXAMPLE 1.21. It is not easy to dream up a space that is T3 but not T4, but they exist. For
instance, if we take R, but give it the right-half-open interval topology from Example 1.48, and
then form R×R, the resulting space, the “half-open square topology” is T3 but not T4. I don’t
know a way to prove this that doesn’t involve the Baire category theorem.

3. Continuous functions

The purpose of topological spaces is to define continuity. First we recall the metric-space
definition of continuity.

DEFINITION 1.22. Let (X1,d1) and (X2,d2) be two metric spaces, and let f : X1 → X2 be a
function. We say that f is continuous if, for all x ∈ X1 and all ϵ> 0, there exists some δ> 0 such
that

d(x, y) < δ⇒ d( f (x), f (y)) < ϵ.

And now, the topological definition of continuity.
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DEFINITION 1.23. Let (X1,τ1) and (X2,τ2) be topological spaces and let f : X1 → X2 be a
function. We say f is continuous if, for all open sets U ⊂ X2, the preimage set f −1(U ) = {x ∈ X1 |
f (x) ∈U } is open in X1.

PROPOSITION 1.24. Let (X1,d1) and (X2,d2) be metric spaces and f : X1 → X2 be a function.
Then f is continuous in the metric-space sense if and only if it is continuous in the topological
sense.

PROOF. Suppose f is metric-continuous. Let U ⊂ X2 be an open set. If U is empty, then there
is nothing to check. Suppose x ∈ f −1(U ), so that f (x) ∈U . Since U is open, there is some ϵ > 0
such that B( f (x),ϵ) ⊂U . Then choose an associated δ, so that d(x, y) < δ implies d( f (x), f (y)) <
ϵ. This last condition is equivalent to saying that f (y) ∈ B( f (x),ϵ), so that y ∈ f −1(U ). We have
shown that B(x,δ) ⊂ f −1(U ). Since f −1(U ) contains an open ball around each of its points, it is
an open set.

Conversely, suppose f is topologically continuous. Let x ∈ X1 and ϵ> 0. The set B( f (x),ϵ) is
open in X2, and therefore f −1(B( f (x),ϵ)) must be open in X . That implies that there exists some
δ such that B(x,δ) ⊂ f −1(B( f (x),ϵ)), which is a restatement of the ϵ-δ-continuity condition. □

REMARK 1.25. We will assume therefore that functions from calculus classes etc. that you
might reasonably have proved to be continuous are continuous.

PROPOSITION 1.26. Let f : X → Y and g : Y → Z be continuous functions between topological
spaces. Then g ◦ f is continuous.

PROOF. Once you observe that (g ◦ f )−1(U ) = g−1( f −1(U )), this is immediate. □

PROPOSITION 1.27. Let f : X → Y be a function between topological spaces. Then f is contin-
uous if and only if f −1 takes closed sets to closed sets.

PROOF. Once you observe that f −1(Y \ Z ) = X \ f −1(Z ), this is immediate. □

PROPOSITION 1.28. Let X be a topological space with the discrete topology, and Y a topolog-
ical space. Then every function f : X → Y is continuous. Conversely, let Z be a topological space
with the indiscrete topology. Then every function g : Y → Z is continuous.

DEFINITION 1.29. A function f : X → Y is open (resp. closed) if f (U ) is open (resp. closed)
whenever U is open (resp. closed) in X .

Both open and closed conditions on functions do arise in topology, but neither is compara-
ble in importance to continuity.

DEFINITION 1.30. A continuous function f : X → Y with a continuous inverse f −1 : Y → X
is called a homeomorphism. This is the topological version of an isomorphism.

The proof of the following statement is elementary.

LEMMA 1.31. If f : X → Y is a continuous bijective function between topological spaces, then
the following are equivalent:

(1) f is a homeomorphism;
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(2) f is open;
(3) f is closed.

EXAMPLE 1.32. Let X be a set with at least two elements. Let (X , i ) denote the space X with
the indiscrete topology and (X ,d) the space with the discrete topology. Then id : (X ,d) → (X , i )
is continuous but not open or closed, whereas id : (X , i ) → (X ,d) is open and closed, but not
continuous.

The first of these two maps is an example of a continuous bijective function that is not a
homeomorphism.

EXAMPLE 1.33. Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, given the metric topology for the usual
metric on subsets of the plane.

The function f : [0,2π) → S1 given by f (θ) = (cosθ, sinθ) is a continuous and bijective func-
tion since both cosθ and sinθ are differentiable, but it is not a homeomorphism. For example,
the set [0,π) is an open subset of the domain, but f ([0,π)) is not open in S1.

4. Generating topologies

DEFINITION 1.34. Let (X ,τ) be a topological space and let x ∈ X be a point. We say that a col-
lection Bx of open neighbourhoods is a local base for τ at x or a system of open neighbourhoods
of x if, for all open U ∋ x, there exists at least one B ∈Bx such that x ∈ B ⊂U .

EXAMPLE 1.35. The most common example of this is the system of balls in metric spaces. Let
x ∈ X be a point in a metric space and let (an)n → 0 be a sequence converging to 0, for instance
(1,1/2,1/3, . . . ). Then the family of balls {B(x, ai )}∞i=1 is a local base for the topology on X at x.

Note that this family is countable, that is, it can be indexed by the natural numbers.

PROPOSITION 1.36. Suppose X is a topological space equipped with local bases Bx at each
point x. Suppose Y is a topological space and f : X → Y is a function. Suppose that for all x ∈ X
and all U ∈Bx , the set f (U ) is a neighbourhood of f (x). Then the function f is open.

PROOF. Suppose V is an open set of X . We wish to show f (V ) is open. Suppose y ∈ f (V ),
then there exists some x ∈V such that f (x) = y . We can find an open neighbourhood U ∋ x such
that U ⊂V and then f (U ) ⊂ f (V ), but f (U ) contains a neighbourhood of f (x) = y by hypothesis.
Therefore f (V ) contains a neighbourhood of the arbitrarily-chosen point y , so that f (V ) is open
by Proposition 1.10. □

DEFINITION 1.37. Let X be a topological space. If each point x ∈ X admits a countable local
base, then we say X is first countable.

Every metric space is first countable.

DEFINITION 1.38. Let (X ,τ) be a topological space and let B be a set of open subsets of X .
If B has the property that it contains a local base for τ at every point, then B is a base (or basis)
for the topology τ.

EXAMPLE 1.39. The prototypical example of a base is the collection of all balls of all radii in
a metric topology.
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DEFINITION 1.40. Let X be a topological space. If X has a countable base, then X is second
countable.

EXAMPLE 1.41. The spaces Rn with the usual topology are second countable. This is perhaps
surprising, but one can take as a countable base the set of all balls B(q ;1/n) where n ∈ N and
where q has only rational-number coefficients.

Note that a base for a topology is not a wholly arbitrary set of open subsets. For instance, if
U ,V ∈ B are sets in a base, and if x ∈U ∩V , then there exists some Wx ∈ B such that x ∈ Wx ⊂
U ∩V . Using Proposition 1.10, we deduce that U ∩V can be written as a union of sets from B.
By an induction argument, every finite intersection of sets from B can be expressed as a union
of sets from B.

DEFINITION 1.42. Let S be a set of subsets of a set X . Let B denote the set of all finite
intersections of sets in S . We say S is a subbase for a topology τ if S consists of open sets of τ
and if B is a base for this topology. That is, for any open set U ∈ τ and any u ∈U , there exists a
finite intersection x ∈ S1 ∩·· ·∩Sn ⊂U .

Whereas the condition of being a base of a topology places a condition on a set, any collec-
tion of subsets can form a subbase.

CONSTRUCTION 1.43. Let X be a set and let S be a set of subsets of X . Let B denote the set
of finite intersections of sets in S and let τ denote the set of unions of all sets in B. Then τ is a
topology, and S is a subbase of τ.

The proof that τ actually is a topology is left as an exercise.

NOTATION 1.44. We say that τ is the topology generated by S .

REMARK 1.45. In this definition, we use the convention that the intersection of an empty set
of subsets of X is X itself. In order to avoid using this convention, some might prefer to impose
a condition on a subbase S that the union of all sets in the subbase is X itself.

Subbases can be used to detect continuity of functions:

PROPOSITION 1.46. Let f : X → Y be a function between topological spaces. Let S generate
the topology on Y , and suppose that for all U ∈S that f −1(U ) is open in X . Then f is continuous.

PROOF. Use f −1(U ∩V ) = f −1(U )∩ f −1(V ) and f −1(
⋃

Ui ) =⋃
f −1(Ui ). □

In contrast, checking on a subbase is not enough to prove openness of a function. One needs
to check on a base, and Proposition 1.36 is one way of articulating this.

EXAMPLE 1.47. Give R its usual topology, and let A = {0,1} with the indiscrete topology. De-
fine a function f : R → A by declaring f (x) = 0 if x ∈ Z and f (x) = 1 otherwise. Let S be the
subbase consisting of the intervals {(x,∞) | x ∈ R} and {(−∞, x) | x ∈ R}. Note that f ((x,∞) = A,
which is open, and similarly f ((∞, x)) = A. Therefore the function f has the property that it
takes open sets from the subbase to open sets. On the other hand f ((2,3)) = {1}, which is not
open, so the function is not open.
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An easy corollary of Proposition 1.36 is that we can verify openness of a function by checking
on a base, however.

EXAMPLE 1.48. We can describe a new topology on R using a subbase. The right half-open
interval topology is defined as the topology generated by all intervals [a,b) ⊂ R. The set of all
such intervals actually forms a base, not just a subbase, for this topology.

Since
⋃∞

n=1[a +1/n,b) = (a,b), the right half-open interval topology is a refinement of the
usual topology on R. It is therefore Hausdorff, but it turns out not to be metric.

5. Induced topologies

Subspace topologies.

DEFINITION 1.49. Suppose (X ,τ) is a topological space and that A ⊂ X is a subset. The
subspace topology on A is the topology τA on A determined as follows: A set U ⊂ A is open
(resp. closed) in A if there exists an open (resp. closed) subset V ⊂ X such that V ∩ A =U .

The proof that these open sets really do define a topology is left as an exercise.

EXAMPLE 1.50. If X is a topological space and A is a subset, then sets that are open in the
subspace topology on A need not be open when considered as subsets of X . A similar warning
applies to closed subsets.

For instance, if X = R with the usual topology and A = [0,1), then (−1/2,1/2)∩ A = [0,1/2),
so that [0,1/2) is open in the subspace topology on A. It is clearly not open in R. Similarly,
[1/2,3/2]∩ A = [1/2,1) is closed in the subspace topology on A, but is obviously not closed in
R.

REMARK 1.51. The subspace topology has an important property. Suppose X is a topolog-
ical space and A a subset of X , given the subspace topology. Suppose f : Y → X is a function
between topological spaces such that im( f ) ⊂ A. Then the induced function f : Y → A is con-
tinuous if and only if f : Y → X is continuous.

DEFINITION 1.52. An embedding i : X → Y is a continuous function such that i induces a
homeomorphism X → i (X ). An embedding may be an open embedding if it has an open image,
a closed embedding if it has closed image. It is an (unassigned) exercise to show that an open
(resp. closed) embedding is an open (resp. closed) function.

Some embeddings are neither open nor closed. For instance, the inclusion of a subspace is
an embedding, and need not be open or closed.

NOTATION 1.53. Given two topologies τ1,τ2 on the same set X , we say τ1 is finer than τ2, and
τ2 is coarser than τ1, if τ1 ⊇ τ2. Equivalently, the identity map id : (X ,τ1) → (X ,τ2) is continuous.

CONSTRUCTION 1.54. The subspace topology is a special case of a more general construc-
tion, that of the induced topology. Here is a general pattern: suppose X is a set, and that {Yi ,τi }i∈I

is a family of topological spaces, and suppose { fi : X → Yi } is a family of functions. Then the
topology on X induced by the fi is the coarsest topology, i.e., fewest open sets, such that the fi

are all continuous.

The subspace topology on A ⊂ X is the topology induced by the inclusion map i : A → X .
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Product Topologies.

CONSTRUCTION 1.55. A special case of the induced topology is the product topology. Sup-
pose {(Xi ,τi )} is a family of topological spaces. Write Y = ∏

i∈I Xi for the cartesian product of
the Xi as a set, and write proji : Y → Xi for the projection. That is, an element y ∈ Y is uniquely
determined by the values proji (y) ∈ Xi . The product topology on Y is the topology induced by
the maps proji .

Less formally, the product topology on Y = ∏
i∈I Xi is the topology generated by the sets

proj−1
i (U ) as i ranges over I and U ranges over the open sets of Xi . In fact, we can restrict atten-

tion to open sets in subbases for the Xi , if need be.

REMARK 1.56. Suppose (X1,d1), . . . , (Xn ,dn) is a finite set of metric spaces. We can put prod-
uct metrics on Y =∏n

i=1 Xi , as well as a product topology. The product metrics may be defined
in many ways, but for definiteness, we take

d((y1, . . . , yn), (x1, . . . , xn)) =
n∑

i=1
di (xi , yi ).

It is an exercise to show that the product metric induces the product topology.

REMARK 1.57. Given a family of topological spaces {(Xi ,τi )}i∈I , the product set Y =∏
i∈I Xi

equipped with the product topology is called the product space. It is an example of a universal
construction.

Let Z be a topological space. A continuous function f : Z → Y gives rise, by composition
with proji , to a family of continuous functions fi : Z → Y → Xi . The functions { fi } determine
the map f uniquely. Moreover, given any family of continuous functions {gi : Z → Xi }, there is a
unique continuous function g : Z → Y such that gi = proji ◦g for all i .

EXAMPLE 1.58. It is important to understand what product topologies look like. Let us start
with the common and relatively easy case of two topological spaces: X and Y . The product
topology on X ×Y is such that the projection maps proj1 : X ×Y → X and proj2 : X ×Y → Y
are both continuous. In fact, it is the coarsest topology with the property that these maps are
continuous.

If U ⊂ X is open (resp. closed) then proj−1
1 (U ) ⊂ X ×Y is open (resp. closed). A less formal

way of writing proj−1
1 (U ) is U ×Y . Similarly if V ⊂ Y is open, then X ×V is open in X ×Y . Putting

the two ideas together: U ×V =U ×Y ∩ X ×V is an open set in X ×Y . In fact, open sets of this
form make up a base for the product topology. They do not, however, comprise all the open sets
in the topology, in general, since (U1 ×V1)∪ (U2 ×V2) is not generally of the form U3 ×V3.

EXAMPLE 1.59. The real fun with product topologies comes when there is an infinite product
of topological spaces. Suppose X1, X2, . . . are countably infinitely many topological spaces (for
instance). Write X = X1 × X2 × . . . . Suppose we have a family Ui ⊂ Xi of open sets in Xi . Then
proj−1

i (Ui ) = X1 × ·· ·× Xi−1 ×Ui × Xi+1 × . . . . These sets are open in the product topology, as is
any finite intersection of them, but there is no reason to expect U1 ×U2 ×U3 × . . . to be open
unless almost all the Ui equal their respective Xi .

You can get a topology on
∏

i∈I Xi by declaring a basis of sets
∏

i∈I Ui where Ui ⊂ Xi is open
for each i . This topology is called the box topology, and it is finer than the product topology.
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PROPOSITION 1.60. Let {Xi }i∈I be a family of topological spaces. The projection functions
proji :

∏
i∈I Xi → Xi are open.

PROOF. Using Proposition 1.36, it suffices to show that proji (U ) is open as the sets U range
over a base for

∏
i∈I Xi . One base is given by sets of the form U =∏

i∈I Ui where Ui ⊂ Xi is open
and all but finitely many Ui are equal to Xi . If U is not empty, then proji (U ) =Ui , which is open.
If U is empty, then proji (U ) =;. □

6. Coinduced topologies

CONSTRUCTION 1.61. Suppose X is a topological space and f : X → Y is a function. The
coinduced topology on Y is the finest topology (most open sets) on Y such that f is continuous.

This is especially useful when f is a surjective function, in which case it is called the quotient
topology.

The generalization to a family of maps fi : Xi → Y is not difficult.
One common case of this is when Y =∐

i∈I Xi , the disjoint union of the spaces Xi . Then the
topology on Y is such that U ∩Y is open if and only if U ∩Xi is open in Xi for all i .

EXAMPLE 1.62. One simple, but technically coinduced, topology is as follows. Suppose (X ,τ)
and (Y ,σ) are topological spaces. There are two maps X → X ∪Y and Y → X ∪Y . The coinduced
topology on X ∪Y is the finest topology making both these maps continuous.

As a special case, if X and Y are disjoint, then the coinduced topology has as its open sets
all sets U ∪V where U ⊂ X and V ⊂ Y are each open.

DEFINITION 1.63. As a special case of the above, if X is a topological space, let X+ denote
the disjoint union of X and a point +, given the coinduced topology. Observe that a point can
have only one topology on it. The open sets of X+ are the sets U+ and U when U ⊂ X is open.

EXAMPLE 1.64. Suppose (X ,τ) is a topological space and A ⊂ X is a nonempty subspace. We
define the quotient space X /A given by collapsing A to a point.

The idea is to collapse all of A to a single point. As a set, X /A is a disjoint union (X \ A)∪ {∗}.
If A is not empty, then we define a surjective function q : X → X /A by q(a) = ∗ if a ∈ A and
q(x) = x otherwise. Then give X /A the quotient topology for the map q : X → X /A.

Tracing through the definitions: X /A consists of X \ A and one more point, ∗ which repre-
sents “all of A”. What sets are open in X /A? Exactly the sets U for which q−1(U ) is open in X .
There are two possibilities for U : either ∗ ∈U or ∗ ̸∈U . If ∗ ∈U , then q−1(U ) is an open subset
of X containing A. If ∗ ̸∈U , then q−1(U ) is an open subset of X that is disjoint from A.

The space X /A has a universal property. First of all, it is more than just a space: it is equipped
with a point we think of as special “∗”. We need a definition. A pointed topological space is a pair
(Y , y0) consisting of a topological space Y and a point y0 ∈ Y , sometimes called the basepoint.
If (Y , y0) and (Z , z0) are pointed spaces, then a function f : Y → Z such that f (y0) = z0) is said to
be based.

Having made this definition, we can say that (X /A,∗) is a pointed space that satisfies all the
following:

(1) There is a continuous function q : X → X /A such that A ⊂ q−1(∗).
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(2) If (Y , y0) is any pointed space such that there exists a continuous function f : X → Y
such that A ⊂ f −1(y0), then there is a unique based continuous function f ′ : X /A → Y
satisfying f = f ′ ◦q .

Heuristically, this universal property tells us that if you want to take A ⊂ X and collapse it to a
single point, then X /A is the minimally-destructive way of doing this.

REMARK 1.65. We use this universal property to inform us what X /; should be, thus defin-
ing X /A no matter what A is. The pair (X /;,∗) should be a pointed space with the following
properties:

(1) There is a continuous function q : X → X /; such that ;⊂ q−1(∗)—the second condi-
tion is vacuous.

(2) If (Y , y0) is any pointed space such that there exists a continuous function f : X →
Y such that ; ⊂ f −1(y0)—another vacuous condition—, then there is a unique based
continuous function f ′ : X /A → Y satisfying f = f ′ ◦q .

Think this through to discover that (X /;,∗) is a based space equipped with a continuous func-
tion f : X → X /; that collapses nothing, and so that the distinguished point ∗ is both open and
closed. That is: X /; is another construction of X+.

EXAMPLE 1.66. As a special case of the above, observe that there is a map f : [0,1] → S1 given
by f (x) = (cos2πx, sin2πx). We will assume the calculus fact that f is continuous. We observe
that f (0) = f (1), so that there is an induced map f ′ : [0,1]/{0,1} → S1. This map is also bijective.

With some work, we can see that f ′ is actually a homeomorphism—this can be done in a
clever way later.

EXAMPLE 1.67. Suppose X is a topological space and ∼⊂ X × X is an equivalence relation
on X . Then there is a surjective map of sets q : X → X / ∼, where q(x) is the equivalence class of
x. We endow X / ∼ with the quotient topology, and call it the quotient space of X by ∼.

The quotient space here has a universal property: q : X → X / ∼ is a continuous function
such that q(x) = q(x ′) whenever x ∼ x ′, and if f : X → Y is a continuous function such that
f (x) = f (x ′) whenever x ∼ x ′, then there exists a unique continuous function f ′ : X / ∼→ Y such
that f = f ′ ◦q .

EXAMPLE 1.68. The previous construction is used especially when there is a group acting on
X : say G × X → X , and x ∼ y if there exists g ∈G such that g x = y . Then we abuse notation and
write X /G for the quotient space.

Beware that if H ⊂ G is a subgroup of a group, and if G also happens to be a topological
space, then the notation G/H is ambiguous. It could either mean the result of collapsing the
subspace H ⊂G to a single point, or it might mean the quotient space given by identifying g ∼
hg whenever h ∈ H . In practice, the group-action quotient is usually what is meant.

REMARK 1.69. Quotient spaces are frequently not Hausdorff, even when X is metric. In this
respect, quotient constructions are unlike all the other constructions we have seen so far.



CHAPTER 2

Closure and sequence methods

1. Closure

DEFINITION 2.1. Let X be a topological space and let A be a subset of X . The closure of A in
X , written A, is the intersection of all closed sets that contain A.

PROPOSITION 2.2. The closure operator on subsets of a topological space X has the following
properties:

(1) A is closed.
(2) A ⊂ A, with equality if and only if A is closed.
(3) if A ⊂ B, then A ⊂ B

(4) A = A.

PROOF. (1) Since the intersection of closed subsets is closed, this is immediate.
(2) This is the case because A is the intersection of closed sets, all containing A.
(3) Any closed set containing B is a closed set containing A. Therefore A is the intersection

of a family of sets that contains all closed sets containing B . The result follows.
(4) This is immediate, since A is closed.

□

PROPOSITION 2.3. With notation as before, x ∈ A if and only if, for every open neighbourhood
U ∋ x, the set U ∩ A ̸= ;.

PROOF. Consider the statement “every open neighbourhood U of x satisfies U∩A ̸= ;”. This
is logically equivalent to “for every open set U such that U ∩ A = ;, the element x is not in U ”,
which is equivalent to “for every closed set C such that A ⊂ C , the element x is in C ” which is
equivalent to “x ∈ Ā”. □

REMARK 2.4. Given a sequence of inclusions of sets Z ⊂ Y ⊂ X , where X is a topological
space, it may be the case that the closure of Z in the subspace topology on Y is different from
the closure of Z in the topology on X . On the other hand, if Y ⊂ X is closed, then the two notions
of closure coincide.

2. Interior and boundary

DEFINITION 2.5. Suppose A ⊂ X . Let A◦, the interior of A, denote the union of all open
U ⊂ A.

15
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This concept is dual to that of closure. It is immediate that A◦ ⊂ A, with equality if and only
if A is open.

DEFINITION 2.6. Suppose A ⊂ X . Let ∂A, the boundary of A, denote A− A◦.

PROPOSITION 2.7. With notation as above, a point x ∈ X lies in ∂A if and only if every neigh-
bourhood U ∋ x satisfies U ∩ A ̸= ; and U ∩ (X − A) ̸= ;.

PROOF. The proof of this is an exercise. □

PROPOSITION 2.8. Let X be a topological space and let A be a subspace. Then there is a divi-
sion of X into three disjoint subsets: A◦, ∂A and (X − A)◦. Moreover Ā = A◦∪∂A.

PROOF. The division of X into three parts is really as follows: let x ∈ X be a point. Then
exactly one of the following three cases must obtain:

(1) There is some open U ∋ x such that U ⊂ A. In this case, x ∈ A◦.
(2) There is some open U ∋ x such that U ⊂ X − A. In this case, x ∈ (X − A)◦.
(3) For every open U ∋ x, both U ∩ A and U ∩X − A are not empty. In this case, x ∈ ∂X .

The closure of A consists of those x for which every open neighbourhood meets A, by Propo-
sition 2.3. Therefore A is the complement of (X − A)◦. The result follows. □

COROLLARY 2.9. ∂A = ∂(X − A).

3. Density

DEFINITION 2.10. We say a subset A ⊂ X is dense if A = X . We say A is sparse or nowehere
dense if (A)◦ =;.

REMARK 2.11. The set A is dense in X if X is the only closed set containing A. The contra-
positive is that the only open set U ⊂ X \ A is the empty set. Therefore a set A is dense if and only
if U ∩ A is nonempty whenever U is a nonempty open subset.

EXAMPLE 2.12. In [0,1], the subset Q∩ [0,1] is dense, and countable.
On the other hand, define the Cantor set C ⊂ [0,1] to consist of those numbers that can be

written without any 1s in base 3. Then C is nowhere dense, and uncountable. Note that base-3
representations, like decimal representations, are not always unique. For instance

0.1 = 0.0222. . . .

The set C is closed: it is the intersection of the closed sets:

Cn = {x ∈ [0,1] | Some base-3 representation of x has n-th digit different from 1.}.

The set C is uncountable by Cantor’s diagonal argument. Finally, the set C does not contain any
open intervals: between any two real numbers, one can always find a third real number with a
unique base-3 representation that eventually consists only of 1s.

PROPOSITION 2.13. Let X be a topological space, let A ⊂ X be a dense subset, and let Y be a
Hausdorff topological space. Suppose f , g : X → Y are two continuous functions such that f (a) =
g (a) for all a ∈ A. Then f = g .
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In proving this, we use some lemmas that are useful in their own right.

DEFINITION 2.14. Let Y be a topological space. Write ∆Y for the diagonal subset of Y ×Y
consisting of points (y, y).

LEMMA 2.15. Let Y be a topological space. Then Y is Hausdorff if and only if the diagonal
subset ∆Y ⊂ Y ×Y consisting of points (y, y) is a closed subset.

PROOF. Suppose Y is Hausdorff. Let (x, y) be a non-diagonal point. Then there exists open
U ∋ x and V ∋ y such that U ∩V =; and U ×V therefore gives a subset of Y ×Y containing (x, y)
and disjoint from ∆Y . It follows that Y ×Y \∆Y is open.

Suppose ∆Y is closed. Let (x, y) be a point not in the diagonal. Then there exists some open
sets U ∋ x and V ∋ y such that (U ×Y )∩(Y ×V ) does not meet the diagonal. But this implies that
U ∩V =;, as required. □

REMARK 2.16. There is an obvious function d : Y → Y ×Y given by d(y) = (y, y). Specifically,
this function is given by the universal property of products applied to idY : Y → Y twice, as in
the commutative diagram below:

Y
d

""

idY

""

idY

""

Y ×Y
proj1

//

proj2
��

Y

Y .

Therefore d is a continuous function. The image of d is exactly the diagonal ∆Y . The restriction
of either projection proji : Y ×Y → Y to the subset ∆Y gives a continuous inverse to d : Y →∆Y .
It follows that d is an embedding. The embedding d is called the diagonal embedding.

Lemma 2.15 says that a topological space Y is Hausdorff if and only if the diagonal embed-
ding is a closed embedding (as defined in Definition 1.52).

LEMMA 2.17. Let f , g : X → Y be two continuous functions, and suppose Y is Hausdorff. The
set of points x ∈ X such that f (x) = g (x) is closed in X .

PROOF. The universal property of the product says that the function ( f , g ) : X → Y ×Y given
by ( f , g )(x) = ( f (x), g (x)) is continuous. The inverse image ( f , g )−1(∆Y ) is therefore closed in X .
But ( f , g )−1(∆Y ) is precisely the set of x ∈ X such that f (x) = g (x). □

Of course, you can do this much more directly if you like.

PROOF OF PROPOSITION. The set of points where f (x) = g (x) is closed, and contains the
dense subset A. Therefore it is all of X . □

4. Sequences

I assume you know what a sequence (x1, x2, . . . ) in a topological space X means. We’ll denote
sequences by xn , or, when it is necessary to specify the indexing variable, (xn)n .
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DEFINITION 2.18. A sequence (xn)n in X converges to x ∈ X if, for all open U ∋ x, there exists
some N ∈ N such that xi ∈U for all i > N .

In this formulation, it is clear that the notion of convergence given here is a generalization
of the familiar notion from analysis.

Here is a different way of conceptualizing convergence.

NOTATION 2.19. Unless we say otherwise, the set N∪ {∞} will be given a topology where {n}
is open for all n ∈ N, and a set U ∋∞ is open if and only if it contains some tail: {n,n+1,n+2, . . . }.

PROPOSITION 2.20. The subspace topology on N ⊂ N∪ {∞} is discrete, and N is dense in N∪
{∞}.

REMARK 2.21. A sequence xn is a function x : N → X : the notation xn is a conventional way
of writing x(n). Since N carries the discrete topology, all such functions are continuous.

PROPOSITION 2.22. A sequence x : N → X extends to a continuous function x̂ : N∪ {∞} → X if
and only if xn → x̂(∞).

In this formulation, the following is an immediate consequence of the fact that composites
of continuous functions are continuous.

PROPOSITION 2.23. Let xn be a sequence in X and suppose xn converges to x. Let f : X → Y
be a continuous function. Then f (xn) converges to f (x) in Y .

REMARK 2.24. Similar tricks with composite functions N∪ {∞} → N∪ {∞} can be used to
show that if xn → x and if yn is a subsequence of xn , then yn → x. You can also do this directly.
You probably get enough of this sort of thing in analysis lectures.

We know from analysis lectures that the limit of a convergent sequence is unique in a metric
space. Unfortunately, this does not generalize to non-Hausdorff spaces.

EXAMPLE 2.25. Consider an infinite set X with the cofinte topology. Let xn be a sequence
in X in which xi ̸= x j for all i ̸= j . Such a sequence exists because there exists an injective map
N → X .

Let y ∈ X . Consider any open U ∋ y . The set X \U consists of only finitely many elements,
and therefore only finitely many elements of (xn) lie outside U . In particular, some tail of the
sequence (xn) lies entirely inside U , and so xn → y . But y was arbitrary.

This shows that even in a T1 topological space, limits of sequences may not be unique.

PROPOSITION 2.26. Let X be a Hausdorff topological space and let xn be a sequence in X .
Suppose xn → y and xn → z. Then y = z.

PROOF. The two limits can be encoded as continuous functions

N∪ {∞}
ŷ

##
N

;;

##

X

N∪ {∞}

ẑ
;;
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Here ŷ(0) = y and ẑ(0) = z, whereas ŷ |N = ẑ|N. Since N is dense in N∪ {∞}, and X is Hausdorff, it
follows that ŷ = ẑ. □

Of course, one can prove this in a lower-level way, by working directly with points and sets.
You have surely all done this in analysis courses.

Our function-based approach to sequence convergence gives us a slick proof of the follow-
ing:

PROPOSITION 2.27. Let {Xi }i∈I be a family of topological spaces, let X denote the product. Let
(x j ) be a sequence in X . Let y ∈ X be an element. Then (x j ) → y if and only if πi (x j ) → πi (y) for
all i .

That is, a sequence in a product space converges to y if and only if all the projections con-
verge to the appropriate projections of y .

In a metric space, the closed sets admit a characterization in terms of limits of sequences.
This carries over to all first-countable spaces.

DEFINITION 2.28. Let X be a topological space and A a subspace. Say that A is sequentially
closed if it has the following property: if (an)n is a sequence in A that converges to x ∈ X , then
x ∈ A.

PROPOSITION 2.29. Let X be a topological space and A a closed subspace. Then A is sequen-
tially closed.

PROOF. Consider the commutative diagram of continuous maps

N //

a
��

N∪ {∞}

x̂
��

A // X

which implements (an)n → x. If A is closed in X , then x̂−1(A) is closed in N. Since x̂−1(A) ⊇ N, it
follows that x̂−1(A) ⊇ N = N∪ {∞}. □

PROPOSITION 2.30. Suppose X is a first-countable topological space and A is a sequentially
closed subspace. Then A is closed.

COROLLARY 2.31. Let X and Y be topological spaces where X is first countable. Suppose f :
X → Y is a function with the property that xn → x in X implies f (xn) → f (x) in Y . Then f is
continuous.

PROOF. Let A ⊂ Y be a closed set. We will show f −1(A) is closed. If A is empty, there is noth-
ing to show, so assume it is not. To show f −1(A) is closed, it is sufficient to show it is sequentially
closed. Let xn in f −1(A) be a sequence converging to x ∈ X . Then f (xn) is a sequence in A con-
verging to f (x), and since A is closed, f (x) ∈ A, which implies x ∈ f −1(A). □
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5. Completions of Metric Spaces

DEFINITION 2.32. A sequence xn in a metric space (X ,d) is said to be Cauchy if, for all ϵ> 0,
there exists some N ∈ N such that d(xn , xm) < ϵ for all n,m > N .

REMARK 2.33. All convergent sequences are Cauchy. The sequence xn = ∑n
i=1 1/i is not

Cauchy in R—even though the distance between successive terms tends to 0.

DEFINITION 2.34. A metric space (X ,d) is complete if every Cauchy sequence converges in
X .

EXAMPLE 2.35. It is well known that Rn is complete. A product of two metric spaces is com-
plete. A subset of a complete metric space is complete if and only if it is closed.

EXAMPLE 2.36. The metric space R is homeomorphic to any bounded open interval. For
instance f (x) = x/

p
1+x2 is a homeomorphism f : R → (−1,1). This shows that completeness is

not a topological, but rather a metric, property.

DEFINITION 2.37. A map of metric spaces f : X → Y is an isometry if d( f (x), f (x ′)) = d(x, x ′)
for all x, x ′ ∈ X . We remark that an isometry is necessarily injective.

DEFINITION 2.38. A pseudometric space (X ,δ) is a set X equipped with a function δ : X×X →
[0,∞) satisfying the axioms of a metric space except that δ(x, y) = 0 does not necessarily imply
x = y .

PROPOSITION 2.39. Let (X ,d) be a metric space. Let C X denote the set of all Cauchy se-
quences in X , and let (xn), (yn) ∈C X . Then the sequence d(xn , yn) converges in [0,∞). If we define
δ((xn), (yn)) = limn→∞ d(xn , yn), then δ is a pseudometric on C X .

SKETCH OF PROOF. We claim d(xn , yn) is a Cauchy sequence in R. For any ϵ > 0, choose N
sufficiently large so that d(xn , xm) < ϵ/2 and d(yn , ym) < ϵ/2 for all n,m > N . Then d(xm , ym) ≤
d(xn , yn)+ϵ by the triangle inequality. By a symmetric argument |d(xn , yn)−d(xm , ym)| < ϵ.

Since R is complete, δ is well defined. The pseudometric properties are straightforward to
prove:

lim
n→∞d(xn , yn) ≤ lim

n→∞d(xn , zn)+ lim
n→∞d(zn , yn)

establishes the triangle inequality, for instance. □

REMARK 2.40. If (xn) is a Cauchy sequence and (xni )i is a subsequence, then δ((xn), (xni )) =
0. This follows from the Cauchy property.

CONSTRUCTION 2.41. The relation x ∼ y if δ(x, y) = 0 is an equivalence relation (use the
triangle inequality). Write QX for the set of equivalence classes. If δ(x, x ′) = 0 then the triangle
inequality shows that δ(x, y) = δ(x ′, y). Therefore δ induces a well-defined metric, also denoted
δ here, on QX .

PROPOSITION 2.42. Let (X ,d) be a metric space. The metric space (QX ,δ) is complete.

SKETCH OF PROOF. Let (xn)n denote a Cauchy sequence in QX . We can choose represen-
tatives of each (xn) so that d(xn

i , xn
j ) < max{1/i ,1/ j } for all i , j —pass to a subsequence if need

be.
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Define a sequence by zn = xn
n . We claim that zn a Cauchy sequence and that xn → z. First

we remark that for any given n:

d(xi
n , x j

n) ≤ d(xi
n , xi

s )+d(xi
s , x j

s )+d(x j
s , x j

n) ≤ δ(xi , x j )+2/n

so that
d(zn , xi

j ) ≤ d(xn
n , xi

n)+d(xi
n , xi

j ) ≤ δ(xn , xi )+max{1/i ,1/n}+2/n.

But since (xn)n is Cauchy, it follows easily that z = (zn)n is a Cauchy sequence. Moreover

δ(z, xi ) ≤ δ(x j , xi )+max{1/i ,1/ j }+2/ j

for all j . This shows that xi → z. □

PROPOSITION 2.43. Define a function ι : X → QX by ι(x) = (x, x, . . . ). Then ι is an isometry
with dense image.

PROOF. That ι is an isometry is trivial. The density of the image is proved by observing that
if (xn) = (x1, x2, . . . ) represents an element of QX then (ι(x1), ι(x2), . . . ) converges to (xn). □

REMARK 2.44. The space QX as constructed in this proof is called the completion of X . We
have shown that any metric space embeds isometrically as a dense subset of a complete metric
space.





CHAPTER 3

Compactness

1. Elementary Theory

DEFINITION 3.1. An open cover U of a topological space X is a collection {Ui }i∈I of open
sets such that

⋃
i∈I Ui = X .

DEFINITION 3.2. A topological space X is compact if every open cover {Ui }i∈I contains a
finite subcover {U1, . . . ,Un} such that X =⋃n

i=1 Ui .

REMARK 3.3. Sometimes the term “quasicompact” is used if X is not Hausdorff. This is the
normal usage in algebraic geometry, which is unfortunate since this is also where one sees most
non-Hausdorff compact spaces. In French “compact” means what “compact Hausdorff” means
in English.

PROPOSITION 3.4. Let f : X → Y be a continuous function and suppose X is compact. Then
f (X ) is a compact subspace of Y .

PROOF. Let {Ui }i∈I be an open cover of f (X ). Consider { f −1(Ui )}i∈I , which is an open cover
of X , and therefore has a finite subcover { f −1(U1), . . . , f −1(Un)}. The set {U1, . . . ,Un} is the re-
quired finite subcover of f (X ). □

PROPOSITION 3.5. If X is a space and C1 and C2 are two compact subsets, then C1 ∪C2 is
compact.

PROOF. A cover of C1 ∪C2 contains a finite subset covering C1 and a finite subset covering
C2. □

PROPOSITION 3.6. Suppose C is a closed subspace of a compact space X . Then C is compact.

PROOF. Consider an open cover {Ui }i∈I of C . Let Vi be open in X and satisfy Ui = C ∩Vi .
Consider {Vi }i∈I∪{X \C }. This is an open cover of X . Any finite subcover induces a finite subcover
of {Ui }. □

PROPOSITION 3.7. Suppose C is a compact subspace of a Hausdorff space X . Then C is closed
in X .

PROOF. Let x ∈ X \C . For each y ∈C we can find disjoint open neighbourhoods Uy ∋ y and
Vy ∋ x. Finitely many of the Uy suffice to cover C , since it is compact, and therefore there exists
an intersection of finitely many Vy that is disjoint from C . But a finite intersection of open sets
is open. This proves that x has an open neighbourhood disjoint from C . □

The following corollary is extremely useful.

23
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COROLLARY 3.8. Let f : X → Y be a continuous bijection between topological spaces where X
is compact and Y is Hausdorff. Then f is a homeomorphism.

PROOF. We prove that f is a closed map. This implies that the closed subsets of X are in
bijective correspondence with the closed subsets of Y . Let C ⊂ X be closed, then C is compact,
so f (C ) is compact, so f (C ) is closed. □

PROPOSITION 3.9. A compact Hausdorff space X is a T4 space.

PROOF. In a time-honoured tradition, we prove that X is T3. The proof that it’s T4 is the same
argument again.

Let p be a point and C be a closed subset disjoint from p. Since X is compact, C is compact.
Since X is Hausdorff, for each c ∈C we can find disjoint Uc ∋ p and Vc ∋ c such that Uc ∩Vc =;.
Finitely many Vc suffice to cover C : say V (p) = Vc1 ∪ ·· · ∪Vcn ⊇ C . Then U (p) = ⋂n

i=1 Uci is an
open set disjoint from V (p) and p ∈U (p).

If C1 and C2 are disjoint closed sets, for each p ∈C1 we can find disjoint open U (p) ∋ p and
V (p) ⊇C2. Finitely many of the U (p) suffice to cover C1 and we use the same finite-intersection
idea again to prove X is normal. □

2. The Tube Lemma

LEMMA 3.10 (Generalized Tube Lemma). Let X and Y be topological spaces and A ⊂ X and
B ⊂ Y be compact subsets. If N is an open subset of X ×Y containing A×B, then there exist open
subsets U ⊂ X and V ⊂ Y such that A×B ⊂U ×V ⊂ N .

PROOF. If A is empty, there is nothing to show.
Let a ∈ A. We produce a cover of a × B as follows. For each b ∈ B , we can find an open

set of the form Ub ×Vb such that (a,b) ∈ Ub ×Vb ⊂ N . By compactness, there is a finite set
{(a,b1), (a,b2), . . . , (a,bn)} of such points so that the associated Ubi ×Vbi form a cover A ×B . If
we take U (a) = ⋂n

i=1 Ubi and V (a) = ⋃n
i=1 Vbi , then the open set U (a)×V (a) has the following

properties:

(1) It is contained in N .
(2) It contains {a}×B .

We now repeat this procedure for all a ∈ A to produce a cover {U (a)×V (a)}a∈A of A×B that
is contained in N . Since A is compact, we can find a finite set {a1, a2, . . . , ar } of points in A so
that

⋃r
i=1 U (ai ) ⊃ A. Define U = ⋃r

i=1 U (ai ) and V = ⋂r
i=1 V (ai ). Then A ⊂ U , by construction,

and B ⊂V , since B ⊂V (a) for all a. The set U ×V is open and contains A×B . It remains to verify
that it is contained in N .

Suppose (x, y) ∈U ×V . Then x ∈U (ai ) for at least one of the ai chosen above, and y ∈ V ⊂
V (ai ). Therefore (x, y) ∈U (ai )×V (ai ) ⊂ N . This proves the required containment. □

COROLLARY 3.11 (The Tube Lemma). Let X and Y be topological spaces and suppose X is
compact. Let y ∈ Y . Suppose N is an open neighbourhood of X × {y}, then there exists an open
U ∋ y such that X ×U ⊂ N .
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This implies the following weak version of Tychanoff’s theorem, Theorem 3.26.

COROLLARY 3.12. Let X and Y be compact topological spaces. Then X ×Y is compact.

PROOF. Suppose U = {Ui } is an open cover of X ×Y . For each y ∈ Y , the set X × {y} is com-
pact, and therefore there exists a finite subset Uy of U such that

⋃
Uy ⊃ X × {y}. By use of the

tube lemma, with N =⋃
Uy , we can find an open Vy ∋ y such that X ×Vy ⊂⋃

Uy .
Since Y is compact, finitely many Vy suffice to cover Y : say, Vy1 ,Vy2 , . . . ,Vyn for some points

y1, . . . , yn ∈ Y . Now take the finite union of finite sets of open sets in X ×Y :

W =
n⋃

i=1
Uyi .

This is a finite subcover of U . □

3. Compactness in Metric Spaces

The Lebesgue Covering Lemma.

DEFINITION 3.13. If X is a metric space and A is a subspace of X , then the diameter of A is
the supremum of the set {d(x, y) | x, y ∈ A}. It is finite if and only if A is bounded.

LEMMA 3.14 (Lebesgue covering). Let X be a compact metric space and let U be an open
cover of X . There exists δ> 0 such that whenever A is a subset of X of diameter less than δ, there
exists some Ui ∈U such that A ⊂Ui .

PROOF. For each x ∈ X , choose some Ux ∈ U containing x, and then choose some radius
rx > 0 such that B(x,rx ) ⊂Ux .

Now consider the balls B(x,rx /2). These are open, and they form an open cover of X , so we
may select a finite set of such balls that cover X , say:

X = B(x1,rx1 /2)∪B(x2,rx2 /r )∪·· ·∪B(xn ,rxn /2).

Let r denote the least of the radii r1,r2, . . . ,rn , and set δ= r /2.
Let A be a nonempty set of diameter δ or less. Let x ∈ A be a point. Then x ∈ B(xi ,ri /2) for

some i . Suppose y ∈ A is another point. Then d(y, xi ) < d(y, x)+d(x, xi ) = δ+ ri /2 ≤ ri . We have
shown that A ⊂ B(xi ,ri ) ⊂Uxi , as required. □

The Heine–Borel Theorem. The Heine–Borel Theorem says that a subspace C ⊂ Rn is com-
pact if and only if it is closed and bounded. This section is devoted to a generalization of this
fact, Theorem 3.24.

Before we turn to the theorem itself, we note some consequences

LEMMA 3.15. Let X be a compact topological space and f : X → R be a continuous function.
Then f attains a maximum value on X .

PROOF. The image, f (X ), is a compact subset of R and is therefore closed and bounded. □

EXAMPLE 3.16. The quotient [0,1]/{0,1} is homeomorphic to S1. We can now prove this
quickly. The interval [0,1] is compact, so its surjective image [0,1]/{0,1} is also compact. There-
fore the map f : [0,1]/{0,1} → S1 given by (cos2πθ, sin2πθ) is a continuous bijection with com-
pact source and Hausdorff target.
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DEFINITION 3.17. A topological space X is said to be sequentially compact if every sequence
has a convergent subsequence.

Sequential compactness is neither stronger than nor weaker than compactness. For metric
spaces, however, we will prove that the two concepts coincide.

DEFINITION 3.18. A metric space X is said to be totally bounded if, for all ϵ > 0, one can
cover X by finitely many balls B(xi ,ϵ).

REMARK 3.19. A totally bounded subspace of a metric space is necessarily bounded. Con-
versely, a bounded subspace of Rn is totally bounded. In infinite-dimensional spaces, however,
bounded may not imply totally bounded. For instance, the unit ball B(0,1) of ℓ2 is not totally
bounded.

PROPOSITION 3.20. A compact metric space is totally bounded.

PROOF. For any ϵ, the balls B(x,ϵ) form an open cover. The finite-subcover property implies
total boundedness. □

PROPOSITION 3.21. A compact metric space is complete.

PROOF. Suppose X is a compact metric space. There is an isometric embedding ι : X →QX
where QX is complete and ι(X ) is dense. Since ι(X ) is compact, it is also closed. Therefore ι is a
bijective isometry (a metric equivalence) and X is complete. □

PROPOSITION 3.22. A complete, totally bounded metric space X is sequentially compact. In
particular, a compact metric space is sequentially compact.

PROOF. Let X be a totally bounded metric space. Let (x0
n)n be a sequence. We produce a

Cauchy sequence recursively. Cover X by finitely many balls of radius 1. One of these, B1, con-
tains a tail of the sequence. Let x1 be the sequence that starts with x0

1 and thereafter consists of
only those terms in B1.

Cover B1 by finitely many balls of radius 1/2. One of these, B2, contains a tail of the sequence
x1. Form the sequence

x2 = (x1
1 , x1

2 , subsequent terms in B2)

Cover B2 by finitely many balls of radius 1/3. One of these, B3, contains a tail of the sequence x2.
Form the sequence

x3 = (x2
1 , x2

2 , x2
3 , subsequent terms in B3)

Note that the sequences xi stabilize: xi
n = xi+1

n if n ≤ i . Form x∞ as (xn
n )n . Observe that by virtue

of how we constructed this, if n < m, then x∞
n and x∞

m lie in the same 1/n-ball, so that x∞ is a
Cauchy subsequence of (x0

n).
Since X is complete, this Cauchy subsequence converges and so x0 has a convergent sub-

sequence. □

PROPOSITION 3.23. A sequentially compact metric space is complete and totally bounded.
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PROOF. Suppose X is sequentially compact. If (xn) is a Cauchy sequence, then xn converges
to the limit of any convergent subsequence. Therefore X is complete.

If X is not totally bounded, we can find some ϵ > 0 such that X cannot be covered by ϵ-
balls. Therefore there is an infinite sequence xn of points that are pairwise at distance at least ϵ
from each other. This sequence can have no Cauchy subsequence and therefore no convergent
subsequence, a contradiction. □

THEOREM 3.24. Let (X ,d) be a metric space. The following are equivalent:

(1) X is compact,
(2) X is complete and totally bounded,
(3) X is sequentially compact.

PROOF. We have already proved that 1 implies 2 and that 2 is equivalent to 3. Let us now
assume that X is sequentially compact (and therefore totally bounded). Let {Ui }i∈I be a cover.
We claim that for some n ∈ N, each ball B(x,1/n) is contained in some Ui .

Suppose for the sake of contradiction that this is not the case. Then let xn ∈ X be a sequence
such that B(xn ,1/n) is not contained in any Ui . The sequence (xn)n contains a subsequence
converging, to some limit x. This x is in some Ui , and furthermore, there is some r > 0 such
that B(x,2r ) ⊂Ui and such that B(x,r ) contains infinitely many terms of (xn). But then for any
n > 1/r , we have B(xn ,1/n) ⊂Ui , a contradiction.

Therefore the claim holds. Now, fix a radius 1/n such that each of the balls B(x,1/n) is con-
tained in some Ui , depending on x. Since X is totally bounded, finitely many such balls suffice
to cover X , and therefore finitely many of the Ui suffice to cover X . So X is compact. □

COROLLARY 3.25. A subspace of Rn is compact if and only if it is closed and bounded.

4. Tychanoff’s Theorem

THEOREM 3.26 (Tychanoff’s Theorem). Suppose {Xi }i∈I is a family of compact topological
spaces. Then the product space

∏
i∈I Xi is compact.

REMARK 3.27. This theorem is equivalent to the axiom of choice (in the generality in which
it has been stated). The most useful case is when I is a finite set, in which case it follows from
the case of the product of two compact spaces, X ×Y . We have already proved the result in this
case in Corollary 3.12.

LEMMA 3.28. Let X be a topological space and suppose that X is not compact. Then there
exists a cover {Ui }i∈I of X that does not have a finite subcover and that is maximal with this
property. I.e., for any open set V ̸∈ {Ui }i∈I , the open cover {Ui }i∈I ∪ {V } has a finite subcover.

PROOF. We apply Zorn’s lemma. Suppose {U j } j∈J is a chain of open covers, each without
a finite subcover. Then V = ⋃

j∈J U j is an open cover of X . Suppose V has a finite subcover
{U1,U2, . . . ,Un}. Then there is some U j containing all these sets, a contradiction.

Since any chain of covers-without-finite-subcovers has an upper bound, there must be a
maximal such chain by Zorn’s lemma. □
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THEOREM 3.29 (Alexander’s subbase theorem). Let X be a topological space and let S be a
subbase for the topology on X , such that

⋃
S = X . The space X is compact if and only if every

cover {Si }i∈I ⊂S has a finite subcover.

PROOF. One direction is trivial: X is compact then a fortiori every subbasic cover has a finite
subcover.

Suppose therefore for the sake of contradiction that every cover drawn from S has a finite
subcover, but that X is nonetheless not compact. Let U = {Ui }i∈I be a maximal open cover
without a finite subcover. Consider U ∩S . This cannot form a cover of X , so there is some
x ∈ X such that x is not contained in any of the sets of U ∩S . Nonetheless, there exists some
V ∈ U containing x. We can write x ∈ S1 ∩S2 ∩ ·· · ∩Sn ⊂ V where Si ∈ S for all S. Because of
the way we chose x, none of the Si can appear in U , so that each of the covers U ∪ {Si } strictly
contains U , and therefore each contains a finite subcover of X . These subcovers must involve
Si . There are therefore finite subcovers

{U1,1,U1,2, . . . ,U1,m1 ,S1}

{U2,1,U2,2, . . . ,U2,m1 ,S2}

...

{Un,1,Un,2, . . . ,Un,m1 ,Sn}

where the open sets Ui , j ∈U . But then
⋃

i , j Ui , j ∪V is a union of open sets in U and it contains
every point in X , a contradiction. □

PROOF OF TYCHANOFF’S THEOREM. The product topology X = ∏
i∈I Xi has a subbase given

by all sets of the form π−1
i (U ) where U is open in Xi . By virtue of Alexander’s subbase theorem,

it is sufficient to prove that any cover of X by sets from this subbase has a finite subcover.
Suppose S is an open cover of X where the open subsets are taken from the subbase above.

For any coordinate i , consider the set S ∩ {π−1
i (U ) |U ⊂ Xi }. We claim that for at least one i , the

sets U appearing here must form an open cover of Xi . Suppose not, then in each Xi , there exists
some xi which is not in any of the appropriate open U ⊂ Xi . But now consider x ∈ X such that
πi (x) = xi for all i . This does not lie in any set in S , a contradiction. Hence the claim is proved.

We may assume that there is some Xi such that the open sets π−1
i (U j ) appearing in S

are such that the U j cover Xi . Since Xi is compact, we can take U1, . . . ,Un that cover Xi . Then
π−1

i (U1), . . . ,π−1
i (Un) cover X . □

5. Compactifications

DEFINITION 3.30. Let X be a topological space. A compactification of X is an embedding
i : X → X̂ where X̂ is a compact space and where the image of i is dense in X̂ .

REMARK 3.31. If we require both X and X̂ to be Hausdorff, which is reasonable if we are
doing geometry, and if X is already compact, then the only available compactification is X it-
self, up to homeomorphism. If X is not compact, however, then there may be many different
compactifications.
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REMARK 3.32. If i : X → X̂ is a compactification, then we may refer to X̂ as “the compactifi-
cation”, especially when the map i is obvious. We may say the compactification has a property
P , if the space X̂ has that property. For instance, a “Hausdorff compactification” is a compacti-
fication of i : X → X̂ in which X̂ is Hausdorff.

CONSTRUCTION 3.33. Let X be a topological space. Let the one-point compactification X →
X ∪ {∞} be the inclusion of X into a space X ∪ {∞} consisting of X itself and a new point “at
infinity”. The topology on X ∪ {∞} is defined as follows:

• open subsets of X are open in X ∪ {∞}.
• A subset U ∋ {∞} is open if X \ (U ∩X ) is a closed compact subset of X .

We note that this is actually a topology. Verifying this is routine.

REMARK 3.34. In spite of the name, this is not a compactification if X is already compact. In
that case, X ∪ {∞} = X+.

REMARK 3.35. If X is Hausdorff, then all compact subsets of X are closed, so the “closed” in
“closed compact” is redundant. This is the most commonly-used case of the construction.

PROPOSITION 3.36. If X is not compact, then the obvious inclusion i : X → X ∪ {∞} is a com-
pactification.

PROOF. First we observe that i : X → X ∪{∞} is an embedding. It is clearly injective and easy
to verify that it is continuous. In fact, it is an open map so it follows that it is an embedding.

Next we prove that X ∪ {∞} is compact. Suppose {Ui }i∈I is a cover. Then at least one Ui

contains ∞, so that X \ {U1} is compact. Therefore finitely many of the other Ui suffice to cover
X \U1.

Finally, we verify that X ⊂ X ∪ {∞} is dense. The space X is not compact itself, so that {∞} is
not an open set. Since X is not closed in X ∪ {∞}, its closure must be X ∪ {∞}. □

EXAMPLE 3.37. We have already seen a one-point compactification: N → N∪ {∞} was used
to investigate convergence of sequences .

EXAMPLE 3.38. Here is another, more troubling, example. Take Q with the usual topology
and form the one-point compactification Q → Q∪ {∞}. The open neighbourhoods of ∞ are the
complements of compact sets.

We claim that no compact set K contains the intersection of Q with an open interval I . If it
did, we could find a sequence in I ∩Q converging to an irrational number, and this sequence
could have no convergent subsequence in Q.

Therefore, for any q ∈ Q, every open neighbourhood (a,b)∩Q meets every open neighbour-
hood of ∞. We deduce that Q∪ {∞} is compact, but it is not Hausdorff.

This space has many of the desirable properties of Hausdorff spaces, however. For instance,
convergent sequences have unique limits in it. Suppose K is compact Hausdorff, then the image
of every continuous function f : K → Q∪{∞} is closed, just as would be the case if the target were
Hausdorff. This condition makes Q∪ {∞} a weakly Hausdorff space.

Now we devote ourselves to finding conditions that ensure that the one-point compactifi-
cation of a Hausdorff space is again Hausdorff.
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DEFINITION 3.39. We will say a space X is locally compact if every point x ∈ X is contained
in an open set U that is itself contained in a compact set K .

PROPOSITION 3.40. If X is a Hausdorff space then the following are equivalent:

(1) X is locally compact,
(2) every point x ∈ X has an open neighbourhood U such that Ū is compact,
(3) every point x ∈ X has a local base consisting of open sets U such that Ū is compact.

PROOF. It is trivial that 3 implies 2 which implies 1. Therefore it suffices to show that 1 im-
plies 3. Let x ∈ X be a point and choose U ⊂ K such that x ∈ U and U ⊂ K where U is open
and K is compact. Let {Vi }i∈I be any local base at x. Then {U ∩Vi }i∈I is another local base at x
and, furthermore, each of these sets is contained in K , which is closed—due to the Hausdorff
property. Therefore their closures are closed and contained in K . Consequently, their closures
are compact. □

PROPOSITION 3.41. Let X be a locally compact Hausdorff space. Then the one-point com-
pactification X ∪ {∞} is Hausdorff.

PROOF. Let x ̸= y be two points in X ∪ {∞}. These two points have disjoint open neighbour-
hoods in X if they both lie in X . Therefore the only case we have to check is when y = {∞}. We
can find an open U ∋ x such that the closure in X , denoted Ū is compact, and so X ∪ {∞} \Ū is
an open neighbourhood of {∞} disjoint from U . □

LEMMA 3.42. Let i : X → Y be any Hausdorff compactification of a locally compact Hausdorff
space. Then i is an open map.

PROOF. We prove that i (X ) is open in Y . Let x ∈ X . There exists some open U ∋ x and a
compact U ⊂ K in X . We know that i (K ) is compact, and hence closed, in Y . Since i (X ) is home-
omorphic to X , there exists an open W ∋ i (x) such that W ∩ i (X ) = i (U ). Now consider W \ i (K ).
This is an open set in Y and W ∩ i (X ) ⊂ i (K ) implies that it is disjoint from i (X ). Since i (X ) is
dense in Y , this means that it must be empty, so W ⊂ i (K ) ⊂ i (X ). It follows i (X ) is open.

For any open U ⊂ X , the set i (U ) = V ∩ i (X ) for some open V ⊂ Y , since i is a homeomor-
phism onto its image. Since i (X ) is open, the map i : X → Y is open too. □

PROPOSITION 3.43. Let X be a locally compact, Hausdorff, non-compact space and suppose
i : X → Y is a compactification where Y is Hausdorff. Then the map f : Y → X ∪ {∞} given by

f (y) =
{

y if y ∈ X

∞ otherwise

is continuous.

This means that X ∪ {∞} is final among all Hausdorff compactifications of X .

PROOF. Let U ⊂ X ∪{∞} be an open set. We want to show that f −1(U ) is open. There are two
cases to consider.

First consider the case where ∞ ̸∈ U . In this case, the argument is clear enough: U ⊂ X is
open, so i (U ) = f −1(U ) is open by Lemma 3.42.
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Second, consider the case when ∞∈U . Then X ∪ {∞} \U is a compact subset K of X , and
i (K ) = f −1(X ∪ {∞} \U is closed in Y . The result follows. □

DEFINITION 3.44. A commutative diagram of the form

X
i

��

i ′

  
Y

f // Y ′

where i : X → Y and i ′ : X → Y ′ are compactifications and f is a continuous map is called a map
of compactifications of X . A homeomorphism of compactifications is a map of compactifications
with an inverse map, or equivalently, a map of compactifications where f is a homeomorphism.

COROLLARY 3.45. Let X be a locally compact, Hausdorff but not compact space, and let i :
X → Y be a Hausdorff compactification in which Y \ i (X ) consists of one point. Then i is homeo-
morphic to the one-point compactification.

PROOF. There exists a continuous bijection f : Y → X ∪ {∞} in which the source is compact
and the target is Hausdorff. □

EXAMPLE 3.46. Using stereographic projection, we can prove that Sn is homeomorphic to
the one-point compactification of Rn .

REMARK 3.47. A Hausdorff compactification of a locally compact Hausdorff space, i : X →
Y , is determined up to homeomorphism by which continuous functions f : X → Z where Z is
compact Hausdorff can be extended

X
f //

i

  

Z .

Y

>>

Sometimes we can quantify over a smaller class than “all compact Hausdorff spaces”: For
instance, the compactification S1 of R has the property that a function f : R → [0,1] extends to a
function f̂ : S1 → R if and only if limx→∞ f (x) and limx→−∞ f (x) exist and agree.

There is a “two-point compactification of R”, denoted R∪{±∞}. This is actually homeomor-
phic to [0,1]. A function f : R → [0,1] extends to f̂ : R∪ {±∞} → [0,1] if and only if limx→∞ f (x)
and limx→−∞ f (x) exist, but they do not have to agree.

One might hope for a “maximal” Hausdorff compactification of a locally compact Haus-
dorff space X , and this does exist (assuming the axiom of choice). It is called the Stone–Čech
compactification i X →βX . It has the property that any continuous function f : X → Z where Z
is compact Hausdorff has a unique extension to β f :βX → Z .

For the rest of the course, we will largely work with locally compact Hausdorff spaces.
The one-point compactification allows us to prove the following proposition extending the

characterization of locally compact Hausdorff spaces. It extends 3.40



6. Compactly generated topologies 32

PROPOSITION 3.48. Let X be a Hausdorff topological space. Then X is locally compact if and
only if, for all open N ∋ x, there exists an open U ∋ x such that Ū ⊂ N and Ū is compact.

PROOF. Suppose X is locally compact. Let X ∪ {∞} denote the one-point compactification.
This is a compact Hausdorff space, and is therefore normal. Consider the two closed sets in
X ∪ {∞}:

(X ∪ {∞}) \ N , {x}.

These are disjoint, and by normality (regularity is enough), we can find disjoint open sets U , V
containing them. The set U is an open set containing ∞, so its complement is a compact subset
K ⊂ X , and U was constructed to contain X \ N , so that K ⊂ N . On the other hand, V is an open
set not containing ∞, and therefore V ⊂ X and V is an open set in X . Moreover V ⊂ K , since V
and U are disjoint.

But then V̄ in X is a closed subset contained in K , which is compact, so V̄ is compact and
V̄ ⊂ N .

The other direction is trivial. □

PROPOSITION 3.49. Suppose X is a locally compact Hausdorff space and A ⊂ X is a closed
subspace. Then A is also locally compact and Hausdorff.

PROOF. The space A is certainly Hausdorff.
Suppose a ∈ A is a point. There exists an open neighbourhood U of a in X such that the

closure Ū in X is compact. Now take U ∩ A. This is an open neighbourhood of a in A, and it is
contained in the compact subset Ū ∩ A of A. Since a was an arbitrary point in A, the space A is
locally compact. □

PROPOSITION 3.50. Suppose X is a locally compact Hausdorff space and A ⊂ X is an open
subspace. Then A is also locally compact and Hausdorff.

6. Compactly generated topologies

DEFINITION 3.51. Let X be a topological space. We say a subspace C ⊂ X is k-closed if u−1(C )
is closed in K for all continuous maps u : K → X with compact Hausdorff source.

PROPOSITION 3.52. The k-closed subsets form the closed sets of a topology on X . If the set X
equipped with this topology is denoted k X , then the identity map k X → X is continuous.

DEFINITION 3.53. We say a topology on X is compactly generated if every k-closed set is
closed.

PROPOSITION 3.54. If X is a topological space satisfying either of the following conditions,
then X is compactly generated:

(1) X is Hausdorff and locally compact.
(2) Every sequentially closed subset of X is closed (e.g. if X is first countable).

PROOF. (1) Suppose C is k-closed and x ∈ C̄ . Let K be a compact neighbourhood of
x (a compact set containing an open neighbourhood). Suppose V ∋ x is an arbitrary
open neighbourhood, then K ∩V contains an open neighbourhood of x and so K ∩



33 Chapter 3. Compactness

V ∩C ̸= ;. Therefore x ∈ K ∩C . Let j : K → X be the inclusion. Then j−1(C ) = K ∩C is
closed in K , which implies that x ∈C .

(2) Exercise.
□





CHAPTER 4

Connectedness

1. Connectedness

DEFINITION 4.1. We say a topological space X is connected if every function X → {0,1} where
{0,1} has the discrete topology is constant.

LEMMA 4.2. Let X be a topological space. The following are equivalent:

(1) X is connected;
(2) If A ⊂ X is open and closed, then A =; or A = X ;
(3) Every function X → D, where the target is discrete, is constant.

EXAMPLE 4.3. Let A ⊂ R be a subset of the real line. If x < y < z are three points in R such
that x, z ∈ A but y ̸∈ A, then the function f : R \ {y} → {0,1} given by f (t ) = 0 if t < y and f (t ) = 1
otherwise is continuous and so restricts to a continuous nonconstant function on A. So A is not
connected (it is disconnected).

This implies that if A is a connected subset of R, then A is an interval (including the degener-
ate intervals ; and {a}). On the other hand, if A is an interval and f : A → R has the property that
f (x) = 0 and f (z) = 1 (without loss of generality x < z) and that f is continuous, then consider
the element y = inf{ f −1(1)∩ [x, z]}. Since f −1(1) is closed, f (y) = 1, but since f −1(0) is closed,
f (y) = 0, a contradiction.

It follows that the connected subsets of R are precisely the intervals.

PROPOSITION 4.4. Let f : X → Y be a continuous surjective function, and suppose X is con-
nected. Then Y is connected.

PROPOSITION 4.5. Let X be a topological space, let {Ai }i∈I be a family of connected subspaces
of X such that for all i , j ∈ I , the set Ai ∩ A j is nonempty and such that

⋃
i∈I Ai = X . Then X is

connected.

COROLLARY 4.6. Let {Xi }i∈I be a family of connected spaces. Then X =∏
i∈I Xi is connected.

PROOF. If any of the sets Xi is empty, then the product is empty and there is nothing to do.
Let f : X → {0,1} be a continuous function that is not identically 0. First we observe that if

y and y ′ are two points of X that differ only in one coordinate, the j -th coordinate, then f (y) =
f (y ′). This is because there is an inclusion c j : X j →∏

i∈I Xi given by the other coordinates, and
the composite f ◦ c j gives a continuous function X j → {0,1}.

By an easy induction, if y and y ′′ differ in finitely many coordinates, then f (y) = f (y ′′).
Finally, suppose x ∈ X is such that f (x) = 1. Then f −1(1) contains a subbasic open set U

around x, so that there are finitely many coordinates i1, . . . , ir such that if x and y ′′ agree in

35
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these coordinates, then y ′′ ∈U . In particular, f (y ′′) = 1 as well. But then for arbitrary y ∈ X , we
can change finitely many coordinates to produce y ′′ ∈U , so f (y) = 1. Therefore f is identically
1. □

DEFINITION 4.7. Let X be a topological space and let x ∈ X be point. The connected compo-
nent Cx of x is the union of all connected subsets of X containing x.

REMARK 4.8. The connected components are connected, and if y ∈Cx , then Cy =Cx .

EXAMPLE 4.9. The space Q shows that the connected components are not necessarily open
and closed. A space in which connected components are singletons is said to be totally discon-
nected.

The space Q seems badly behaved from a certain point of view: one might like the connected
components themselves to be both closed and open subsets of the space, but this is not the case.

REMARK 4.10. Every topological space is a union of connected components, and these com-
ponents are pairwise disjoint.

DEFINITION 4.11. A space X is locally connected if every point x ∈ X has a local base {Ui }i∈I

such that Ui is connected.

PROPOSITION 4.12. Let X be a locally connected space, and let Cx be the connected compo-
nent of x ∈ X . Then Cx is open and closed.

PROOF. It suffices to prove Cx is open, since then the complement is the union of the other
components of X , which is also open.

The component Cx contains open neighbourhoods around each point, and is therefore
open. □

2. Path-connectedness

Let I denote [0,1] with the usual topology throughout.

DEFINITION 4.13. A topological space X is path-connected if for every two points x, y ∈ X ,
there is a continuous function γ : I → X such that γ(0) = x and γ(1) = y .

If the functions γ may always be chosen to be injective, then X is arc-connected.

PROPOSITION 4.14. Let f : X → Y be a continuous surjective function, and suppose X is path-
connected. Then Y is path-connected.

PROPOSITION 4.15. Let X be a topological space, let {Ai }i∈I be a family of path-connected
subspaces of X such that for all i , j ∈ I , the set Ai ∩ A j is nonempty and such that

⋃
i∈I Ai = X .

Then X is path-connected.

COROLLARY 4.16. If X is path connected, then it is connected.

COROLLARY 4.17. Let {Xi }i∈I be a family of path-connected spaces. Then X =∏
i∈I Xi is path-

connected.

DEFINITION 4.18. Let X be a topological space and let x ∈ X be point. The path component
Px of x is the union of all path-connected subsets of X containing x.
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REMARK 4.19. The path components are path-connected, and if y ∈ Px , then Py = Px .

REMARK 4.20. Every topological space is a union of connected components, and these com-
ponents are pairwise disjoint. Note also that for all x, the path component Px is contained in the
connected component Cx .

DEFINITION 4.21. A space X is locally path-connected if every point x ∈ X has a local base
{Ui }i∈I such that Ui is path-connected.

PROPOSITION 4.22. If X is locally path connected and U ⊂ X is an open subset, then U is
locally path connected.

We include this result mostly to highlight the fact that it does not necessarily apply to closed
subsets.

PROPOSITION 4.23. Let X be a locally path-connected space, and let x ∈ X be a point. Then
Px =Cx .

PROOF. If X is locally path-connected, then it is locally connected. Therefore Proposition
4.12 says that Cx is both open and closed in X . An argument entirely analogous to Proposition
4.12 says that, since X is locally path-connected, Px is also open and closed in X .

In particular, Px is both an open and a closed subset of the connected subspace Cx . Since
Px is not empty, it must be the case that Px =Cx . □

COROLLARY 4.24. If X is locally path-connected and connected, then X is path-connected.

EXAMPLE 4.25. The topologist’s sine curve S is a well-known metric space that is connected
but not path connected. This set is defined as

S = {(0, y) | −1 ≤ y ≤ 1}∪ {(x, sin
1

x
) | x > 0}.

First we show that this is connected. The subset C = {(x, sin 1
x ) | x > 0} is homeomorphic to (0,∞)

and is therefore connected. Let (0, t ) be a point in L = {(0, y) | −1 ≤ y ≤ 1}, and let f : S → {0,1}
be a continuous function taking (without loss of generality) the value 0 on C . Then there is a
sequence in C converging to (0, t ), so that f ((0, t )) = 0 by continuity. The function f is therefore
constant. This shows S is connected.

Now we show that S is not path connected. Suppose f : I → S is a path from a point in
L to p = (1/π,0). Consider the set f −1(L), which is closed in L, and therefore has a maximal
element, t0 < 1. Restricting, we have a continuous function f : [t0,1] → S with the property that
f (t0) = (0, yt0 ) and (xt , yt ) := f (t ) ∈C for t > t0. Since f is continuous, limt→t0+ xt = 0, and by the
intermediate value theorem we can find sequences of values of t

(t+n ) such that xt+n = 1/(2nπ)

and
(t−n ) such that xt+n = 3/(2nπ)

each converging to t0. But then f (t+n ) = (t+n ,1) while f (t−n ) = (t−n ,−1), so that the y coordinate of
f (t0) must be both limn→∞+1 and limn→∞−1.





CHAPTER 5

Homotopy

1. Basic Definitions

Homotopies. In this section, “map” will denote a continuous function and I will denote
[0,1].

DEFINITION 5.1. Let X and Y be topological spaces and A ⊂ X be a subset. Suppose f0, f1 :
X → Y are two maps such that f0|A = f1|A . Then a homotopy relative to A from f0 to f1 (or
between f0 and f1) is a map H : X × I → Y such that

H(x,0) = f0(x) ∀x ∈ X

H(x,1) = f1(x) ∀x ∈ X

H(a, t ) = f0(a) = f1(a) ∀a ∈ A, ∀t ∈ I

NOTATION 5.2. A homotopy relative to ; is called a homotopy.

NOTATION 5.3. If a homotopy relative to A exists from f to g , we say that f and g are homo-
topic relative to A. In the case where A =;, we say f and g are homotopic.

NOTATION 5.4. We write f ≃A g to indicate that f is homotopic to g relative to A. This
implies, among other things, that f |A = g |A . We may write f ≃ g if A is understood or if A is
empty.

PROPOSITION 5.5. Let A ⊂ X and Y be topological spaces, and consider maps f : X → Y . The
relation ≃A is an equivalence relation.

PROOF. Reflexivity: H(x, t ) = f (x) gives a homotopy from f to f .
Symmetry: if H gives a homotopy one way, then H ′(x, t ) := H(x,1− t ) gives a homotopy the

other way.
Transitivity: suppose H0 is a homotopy (rel. A) from f0 to f1 and H1 is a homotopy (rel. A)

from f1 to f2. Then define

H(x, t ) =
{

H0(x,2t ) t ≤ 1/2

H1(x,2t −1) t > 1/2
.

This gives a homotopy from f0 to f2 (rel. A). □

PROPOSITION 5.6. Suppose X , Y and Z are three spaces, and A ⊂ X and B ⊂ Y are subspaces.
Suppose f0, f1 : X → Y are maps such that f0 ≃A f1 and that f0(A) ⊂ B. Suppose also that g0, g1 :
Y → Z are maps such that g0 ≃B g1. Then g1 ◦ f1 ≃A g0 ◦ f0.

39
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PROOF. There exist homotopies H ′ from f0 to f1 and H ′′ from g0 to g1. Now consider

H : X × I → Z

defined by
H(x, t ) = H ′′(H ′(x, t ), t ).

This is the required homotopy. □

Homotopy Equivalence and the Homotopy Category. Recall that two spaces X and Y are
homeomorphic if there are maps f : X → Y and g : Y → X such that g ◦ f = idX and f ◦ g = idY .
Homotopy equivalence of spaces is the relation you get if you weaken the “=” signs to “≃”.

DEFINITION 5.7. A map f : X → Y of topological spaces is a homotopy equivalence if there
exists a map g : Y → X such that:

g ◦ f ≃ idX , f ◦ g ≃ idY .

Note that a homeomorphism is a homotopy equivalence. We now show that the homotopy
equivalences are exactly the isomorphisms in a certain category.

DEFINITION 5.8. The homotopy category H is a category defined as follows. The objects of H
are the topological spaces. The morphisms in H from X to Y are the homotopy classes (rel. ;)
of maps X → Y . We know from Proposition 5.5 that these equivalence classes are defined. We
know from Proposition 5.6 that composition of equivalence classes is well defined. It is imme-
diate from the construction that the class of idX : X → X serves as an identity morphism in this
category.

NOTATION 5.9. In this course, we will write [X ,Y ] for the set of morphisms X → Y in H. That
is, [X ,Y ] is the set of homotopy classes of continuous functions from X → Y .

PROPOSITION 5.10. There is a functor Top → H that is the identity on objects and sends a
morphism f : X → Y to the homotopy class of f . We will denote this class by [ f ].

PROOF. It suffices to verify compatibility with compositions: [ f ◦g ] = [ f ]◦[g ], and that [idX ]
is the identity in H. Both are routine. □

PROPOSITION 5.11. A map f : X → Y is a homotopy equivalence if and only if [ f ] is an iso-
morphism in H.

PROOF. Suppose [ f ] is an isomorphism. Then it has an inverse in H, which must be the class
of some map g : Y → X . We know that [g ] ◦ [ f ] = [idX ], and unwinding definitions this means
g ◦ f ≃ idX . The statement f ◦ g ≃ idY is deduced similarly.

Now suppose that f is a homotopy equivalence. Let g be the homotopy inverse. Then g ◦ f ≃
idX , which is to say that [g ◦ f ] = [idX ], and by functoriality, [g ] ◦ [ f ] = [idX ]. The statement
[ f ]◦ [g ] = [idY ] is similar. □

This view of homotopy equivalences allows us to prove some formal properties without
much effort.

COROLLARY 5.12 (The 2-out-of-3 property). Suppose f : X → Y and g : Y → Z are maps.
Then, if two of the maps { f , g , g ◦ f } are homotopy equivalences, so is the third.
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COROLLARY 5.13 (The 2-out-of-6 property). Suppose f : X → Y , g : Y → Z and h : Z →W are
maps. Then if g ◦ f and h ◦g are homotopy equivalences, then f , g ,h are homotopy equivalences.

NOTATION 5.14. We write X ≃ Y to indicate that X is homotopy equivalent to Y . Note that
the symbol ≃ is used in two related, but distinct, ways: f1 ≃ f2 means there is a homotopy from
f1 to f2, whereas X ≃ Y means that the spaces are homotopy equivalent, i.e., there are maps
f : X → Y and g : Y → X that are homotopy inverse to one another.

Retractions and Deformation Retractions.

DEFINITION 5.15. A subspace A ⊂ X is a retract if there exists a retraction map r : X → A
such that r (a) = a for all a ∈ A. More generally, an embedding i : A → X is a retract if i (A) is a
retract of X , or equivalently, if there is a map r : X → A such that r ◦ i = idA .

DEFINITION 5.16. A deformation retraction of a space X onto a subspace A is a map H :
X × I → X such that:

(1) H0 : X → X is the identity.
(2) The image of H1 lies in A.
(3) H1(a) = a for all a ∈ A.

The deformation retraction is said to be a strong deformation retraction if Ht (a) = a for all t ∈ I
and all a ∈ A. The space A will be said to be a (strong) deformation retract of A as appropriate.

That is, a deformation retraction includes both a retraction H1 : X → A and a homotopy
from idX to H1. The deformation retractions that arise in practice are usually strong. We may
say that an embedding i : A → X is a deformation retract if i (A) is a deformation retract of X .

LEMMA 5.17. If i : A → X is a deformation retract, then i is a homotopy equivalence.

PROOF. We know i◦r ≃ idX and r ◦i = idA , which establishes the homotopy equivalence. □

Showing that a map is a homotopy equivalence can be cumbersome, and there are pitfalls.
Lemma 5.17 is very useful in calculations.

EXAMPLE 5.18. If X is any nonempty space at all, then any inclusion {x} → X is a retract, but
in general this is not a deformation retract.

EXAMPLE 5.19. Recall that Sn denotes the subset of Rn+1 consisting of elements of norm 1.
There is a (strong) deformation retraction of Rn+1 \ {0} to Sn given by

H(v, t ) = 1

t (∥v∥−1)+1
v.

We verify this:

(1) H is continuous.
(2) H(v,0) = 1

1 v = v.
(3) H(v,1) = 1

∥v∥v ∈ Sn .

(4) If ∥v∥ = 1, then H(v, t ) = 1
1 v, as required.

This has the notable consequence that Sn ≃ Rn+1 \ {0}.
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2. The pointed homotopy category and homotopy groups

DEFINITION 5.20. Let the category Top• denote the category of based topological spaces. The
objects are pairs (X , x0) where x0 ∈ X , and the morphisms f : (X , x0) → (Y , y0) are continuous
functions such that f (x0) = y0.

REMARK 5.21. We frequently omit the basepoint x0 from the notation.

NOTATION 5.22. Write [(X , x0), (Y , y0)]• for the set of homotopy classes relative to x0, of maps
f : X → Y satisfying f (x0) = y0. That is, g is in the class of f if and only if there exists a homotopy

H : X × I → Y

such that

H(x,0) = f (x) ∀x ∈ X

H(x,1) = g (x) ∀x ∈ X

H(x0, t ) = y0 ∀t ∈ I

DEFINITION 5.23. We write H• for the pointed homotopy category: the objects are based
spaces and the set of morphisms from X to Y is [(X , x0), (Y , y0)]•.

REMARK 5.24. As in the unpointed case, there is a functor Top• → H• that is the identity on
objects and sends f to the (pointed) homotopy class of f .

REMARK 5.25. There can exist based spaces (X , x0) and (Y , y0), along with pointed maps
f , g : X → Y such that f ≃ g in the unpointed sense, but f ̸≃x0 g in the pointed sense.

DEFINITION 5.26. Let (X , x0) be a pointed space and let n ≥ 0. Give Sn the basepoint (1,0, . . . ,0).
Then define the n-th homotopy group of (X , x0) by

πn(X , x0) = [Sn , X ]•
Note that the basepoint is dropped from the notation.

REMARK 5.27. If you prefer not to use the homotopy-category formulation, you can define
πn(X , x0) as follows:

πn(X , x0) = { f : (Sn , s0) → (X , x0) | f is a pointed map}/ ≃
where the relation ≃ denotes pointed homotopy.

REMARK 5.28. The term “homotopy group” is a misnomer, since π0(X , x0) = [S0, X ]• is not
in general a group. For larger values of n, however, the sets πn(X , x0) do have a natural group
operation defined on them. We will prove this in the case of π1(X , x0) later.

EXAMPLE 5.29. π0(X , x0) is the set of based homotopy classes of based maps S0 → (X , x0).
The space S0 is the discrete space with two points. A based map f : S0 → X corresponds exactly
to a single element f (−1) ∈ X , since f (1) = x0. Then two such maps f , g are homotopic if and
only if there is a path in X from f (−1) to g (−1). Therefore we can identify π0(X , x0) with the set
of path components of X . There is a distinguished component, that of x0.
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In contrast to the case of the larger values of i , in the case where i = 0, one can define π0(X )
without reference to the basepoint: π0(X ) = [∗, X ]. This is the set of path components of X with-
out any distinguished choice of component.

REMARK 5.30. As defined, πn(X , x0) is a composite of two functors: one being the functor
from Top• → H• and the other being [Sn , ·]•. This implies that πn(X , x0) is itself a functor, or, in
less fancy language, if you have a based map f : (X , x0) → (Y , y0), then you get induced functions

f∗ :πn(X , x0) →πn(Y , y0)

and these induced functions respect compositions and identities.
To define f∗ explicitly with functions, do the following: suppose g : (Sn , s0) → (X , x0) is a map

of pointed spaces. Then g represents a class [g ] ∈πn(X , x0). The element f∗([g ]) is the homotopy
class of the map f ◦ g : (Sn , s0) → (Y , y0).

REMARK 5.31. If h : (X , x0) → (Y , y0) is an isomorphism in H•, then [Sn , X ]• → [Sn ,Y ]• is
an isomorphism. That is, if h is a pointed homotopy equivalence, then the induced map h∗ :
πn(X , x0) →πn(Y , y0) is a bijection.

This can be strengthened to the statement: If h : X → Y is an isomorphism in H, and x0 ∈ X ,
then the induced map h∗ :πn(X , x0) →πn(Y ,h(y0)) is a bijection. We will not prove this for n ≥ 2
in this course. For n = 0, it is easy to see because π0(X , x0) is the set π0(X ) = [∗, X ] equipped
with a distinguished point, and π0(·) does not depend on the basepoint. The result for π1 will be
proved later.

REMARK 5.32. The groups πi (X , x0) are considered hard to compute when i ≥ 2. For in-
stance, I don’t think πi (S2, s0) has been fully computed for values of i much beyond 30. We will
concentrate in the rest of this course on the group about which a lot is known: π1(X , x0). This is
the fundamental group of (X , x0).

CONSTRUCTION 5.33. Let (X , x0) and (Y , y0) be two pointed spaces. We define the wedge
sum (X , x0)∨(Y , y0) to be the quotient of X

∐
Y given by collapsing the subspace {x0}

∐
{y0}. The

space (X , x0)∨ (Y , y0) is naturally embedded as a subspace of X ×Y , by equating x ∈ X with the
pair (x, y0) and y ∈ Y with (x0, y). The quotient (X ×Y )/(X ∨Y ) =: X ∧Y is called the smash
product.

If X is the one-point compactification of an LCH space U and Y is the one-point compact-
ification of an LCH space V , and if X and Y are given the basepoints at ∞, then X ∧Y is the
one-point compactification of U ×V .

In particular, Sn ∧Sm ≈ Sn+m .

3. Contractible spaces

DEFINITION 5.34. A map f : X → Y is nullhomotopic if there exists an element y ∈ Y such
that f is homotopic to the map with constant value y . If a map is not nullhomotopic, it is essen-
tial.

DEFINITION 5.35. A space X is contractible if the identity map idX : X → X is nullhomotopic.
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REMARK 5.36. One can define nullhomotopy in the category of pointed spaces and based
maps as well. In this case a map f : (X , x0) → (Y , y0) is nullhomotopic if there exists a basepoint-
preserving homotopy of f to the constant map at y0.

If a pointed map f : (X , x0) → (Y , y0) is nullhomotopic, then the underlying (unpointed)
map f is nullhomotopic. In practice, it is rare to encounter a pointed map f : (X , x0) → (Y , y0) so
that the underlying map f is nullhomotopic but where the pointed map is essential. An example
is given by an inclusion of a point in the comb-space, so they do exist.

REMARK 5.37. Similarly to the unpointed case, one could define pointed contractibility: a
pointed space (X , x0) is pointed-contractible if the identity id : (X , x0) → (X , x0) is homotopic
to the constant map through a basepoint-preserving homotopy. Again, the comb-space can be
used to produce a pointed space (X , x0) so that (X , x0) is not pointed-contractible, but X is con-
tractible (forgetting the basepoint). Even worse, there exist examples of spaces Y that are con-
tractible but such that (Y , y0) is not pointed-contractible for any choice of y0 ∈ Y .

For the classes of space that arise in practice, e.g., Manifolds or CW complexes (see later),
one can often prove a result such as: (X , x0) is pointed contractible if and only if X is contractible.
Furthermore, it is the concept of contractibility, not pointed contractibility, that is most useful
in applications. We do not really pursue pointed contractibility further in these notes.

PROPOSITION 5.38. A space X is contractible if and only if it is homotopy equivalent to a
one-point space.

PROOF. Suppose X is contractible. In particular, there exists x0 ∈ X and a homotopy H :
X × [0,1] → X such that H0 : X → X is idX and H1 : X → X is the constant map at {x0}, i.e., there
is a deformation retraction of X onto a one-point subspace.

Conversely, suppose there exists a homotopy equivalence f : {z} → X , with homotopy in-
verse g . Then the fact that f ◦ g ≃ idX implies that there is a deformation retraction of X onto
{ f (z)}. □

PROPOSITION 5.39. Suppose X is a contractible space and Y is any space. The set [Y , X ] of
homotopy classes of maps from Y to X consists of one element.

That is to say, every map from Y to X is homotopic to every other map.

PROOF. Since X is contractible, we can find an element x0 ∈ X so that idX : X → X is ho-
motopic to g : X → X , the constant map with value x0. Then if f : Y → X is any map, there is a
homotopy from f = idX ◦ f to g ◦ f , and g ◦ f is the map Y → X with the constant value x0. □

COROLLARY 5.40. If X is contractible and i : A → X is a retract, then A is contractible.

(Note: the hypothesis says “retract” and not “deformation retract”)

PROOF. We show that if i : A → X is a retract, then A is homotopy equivalent to X , and
therefore to a point. Let r : X → A be a retraction, so that r ◦ i = idA . But i ◦ r is a map from
X → X , and is therefore homotopic to idX (since all maps X → X are homotopic by Proposition
5.39).

In summary, r ◦ i = idA and i ◦ r ≃ idX , so that A ≃ X . Since X is contractible, so is A. □
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Many commonly-occurring spaces are contractible. Here is a device for establishing this
quickly.

PROPOSITION 5.41. Suppose a space X has a multiplicative action by [0,1]; that is, there is a
map m : [0,1]×X → X for which

(1) m(t1,m(t2, x)) = m(t1t2, x) and
(2) m(1, x) = x

for all t1, t2 ∈ [0,1] and x ∈ X . Let X0 denote the image of m(0, ·). Then X0 is a (strong) deformation
retract of X .

PROOF. Certainly i : X0 → X is an embedding. The map m : [0,1]× X → X functions as the
homotopy in a strong deformation retract. □

COROLLARY 5.42. Let V be a topological R-vector space, and let X be a nonempty subspace
of V that is closed under multiplication by [0,1] (call such a region starshaped). Then X is con-
tractible.

REMARK 5.43. If V is as above and Y is a nonempty convex subset of V , then Y is homeo-
morphic to a translate of Y containing the origin. This translate is starshaped, and therefore Y
is contractible.

Initial and terminal objects

REMARK 5.44. In a category C, if an object ∗ has the property that all objects c ∈ C are have
a unique map c →∗, then ∗ is called a terminal object of C. You can prove many trivial things
about terminal objects: for instance, any two terminal objects must be isomorphic and any map
between terminal objects must be an isomorphism. Any object isomorphic to a terminal object
must itself be terminal.

A space X is contractible if and only if X is a terminal object of H. The trivialities mentioned
above lead to abstract proofs of statements such as: any two maps f , g : X → Y between con-
tractible spaces are homotopic.

REMARK 5.45. There is also the notion of an initial object ; in a category C. An object is
initial if all objects c are equipped with a unique morphism ;→ c. Similarly to the case of final
objects, initial objects are isomorphic, all maps between them are isomorphisms and all objects
isomorphic to an initial object must be initial.

There is a unique initial object in Top and H, the empty space. In Top• and H•, the one-point
spaces are initial, however. An object that is both initial and final is called a zero object.





CHAPTER 6

The fundamental groupoid and the fundamental group

1. The fundamental groupoid

CONSTRUCTION 6.1. Suppose γ,δ : I → X are two paths, and suppose γ(1) = δ(0). We define
a composite path γ ·δ : I → X by

γ ·δ(t ) =
{
γ(2t ) if t ≤ 1/2

δ(2t −1) if t ≥ 1/2
.

NOTATION 6.2. Let us say that two paths γ,γ′ : I → X are equivalent and if γ ≃ γ′ relative
to {0,1}. In particular, γ and γ′ have the same endpoints. Recall that homotopy (relative to a
subspace) is an equivalence relation. We will write [γ] for the equivalence class of γ.

REMARK 6.3. Warning: the notation [γ] when γ : I → X is different from the notation [ f ]
used in the previous chapter. The homotopies used to define [γ] are the homotopies relative to
{0,1}, and when γ : I → X is a path, the notation [γ] will be used only in this sense.

What follows is some technical lemmas about path composition.

PROPOSITION 6.4. If [γ] = [γ′] and [δ] = [δ′] and if γ ·δ is defined, then [γ ·δ] = [γ′ ·δ′].
REMARK 6.5. That is, the composition of paths descends to equivalence classes. After we

have proved this result, we can define [γ][δ] by choosing representatives.

PROOF. Let H be a homotopy from γ to γ′, relative to endpoints, and similarly, let E be a
homotopy from δ to δ′. Then define

H ·E : I × I → X , E ◦H(t , s) =
{

H(2t , s) if t ≤ 1/2

E(2t −1, s) if t ≥ 1/2

This gives the required homotopy of γ ·δ to γ′ ·δ′ relative to {0,1}. □

Composition of paths is not associative—you can check directly that γ · (δ ·ϵ) ̸= (γ ·δ) ·ϵ.

PROPOSITION 6.6. Suppose γ, δ and ϵ are paths in X such that γ · (δ · ϵ) is defined. Then
[γ]([δ][ϵ]) = ([γ][δ])[ϵ].

That is, the composition is associative once we pass to homotopy classes.

PROOF. It is sufficient to write down a homotopy (relative to endpoints) between γ · (δ · ϵ)
and (γ ·δ) ·ϵ.

47
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H(t , s) =


γ(4t/(2− s)) if t ≤ 1/2− s/4

δ(4t −2+ s) if 1/2− s/4 ≤ t ≤ 3/4− s/4

ϵ(1+4(t −1)/(1+ s)) if t ≥ 3/4− s/4

□

DEFINITION 6.7. If X is a space and x ∈ X , define ex to be the constant path at x, i.e., ex (t ) = x
for all t .

PROPOSITION 6.8. Let X be a space and let γ be a path in X starting at x and ending at y.
Then [ex ] · [γ] = [γ] and [γ] · [ey ] = [γ].

PROOF. We’ll show one of these. The other is similar.
Just write down a homotopy from ex ·γ to γ.

H(t , s) =
{

x if 2t ≤ 1− s

γ(1+2(t −1)/(s +1)) if 2t ≥ 1− s

□

NOTATION 6.9. If γ : I → X is a path, write γ← for the reverse of γ: γ←(t ) = γ(1− t ). Clearly,
(γ←)← = γ.

PROPOSITION 6.10. In the notation above, if γ is a path from x to y, then [γ] · [γ←] = [ex ].

PROOF. We write down a homotopy:

H(t , s) =


γ(2t ) if 2t ≤ 1− s

γ(1− s) if 1− s ≤ 2t ≤ 1+ s

γ(2−2t ) if 1+ s ≤ 2t

□

Recall that a groupoid G is a category having a set of objects and a set of morphisms and
such that all morphisms are isomorphisms.

DEFINITION 6.11. Let X be a topological space and let A ⊂ X be a subset of X . Define a
fundamental groupoid of X with endpoints in A, denoted Π(X , A), as the groupoid where

obΠ(X , A) = A

and for a0, a1 ∈ A, the set of morphisms from a0 to a1, is the equivalence classes of paths in X
starting at a0 and ending at a1. The previous propositions ensure that the composition law is
well defined1 and associative, that [ea0 ] is the identity at a0 and that inverses exist for all mor-
phisms (just reverse the path). So this really is a groupoid.

1Warning: one defines the geometric composition of paths [γ1] · [γ2] to mean “first do γ1 and then do γ2”. In
order to match the conventions for compositions in a category, you have to declare that [γ2] ◦ [γ1] = [γ1] · [γ2]. We
use the geometric presentation throughout.
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REMARK 6.12. A special cases of the above is when A = X . In this case Π(X , X ) is often writ-
ten simply Π(X ), and is called the fundamental groupoid of X .

CONSTRUCTION 6.13. If f : X → Y is a continuous map of spaces, and if f (A) ⊂ B , then there
is an induced morphism of groupoids f∗ :Π(X , A) →Π(Y ,B), given by sending a point a to f (a)
and the class of a path γ : I → X to the class of f ◦γ. Proposition 5.6 assures us that f∗ is well
defined.

PROPOSITION 6.14. There is a functor

Top → Groupoids

given by assigning to each space X its fundamental groupoidΠ(X ) (i.e.,Π(X , X )) and to each map
of spaces f : X → Y the morphism of groupoids f∗ :Π(X ) →Π(Y ).

PROOF. The statement of the proposition has specified what happens on objects and mor-
phisms of Top. It remains to verify that the construction is actually a functor. That is, we must
show that

(1) (idX )∗ = idΠ(X ), which is elementary, and
(2) If f : X → Y and g : Y → Z are composable continuous functions, then (g ◦ f )∗ = g∗ ◦

f∗.This is not difficult, but here are the details:
For x ∈ obΠ(X ), we have (g ◦ f )∗(x) = g ( f (x)) = g∗ ◦ f∗(x). For [γ] ∈ morΠ(X ), we

may choose a representative path γ : [0,1] → X . Then (g ◦ f )∗[γ] is the class of the path
g ◦ f ◦γ : [0,1] → Z . For a similar reason, f ◦γ : [0,1] → Z is a representative of the class
f∗([γ]), so that g∗( f∗([γ])) is the class of g ◦ f ◦γ as well. This completes the proof.

□

2. The fundamental group

To avoid getting bogged down in category theory, we often restrict ourselves to the special
case A = {x0}.

DEFINITION 6.15. Let X be a space and x0 ∈ X a point. We defineπ1(X , x0), the fundamental
group of X at the base point x0, to be the group Π(X , {x0}). Here we identify a groupoid with one
object, Π(X , {x0}), with the group of morphisms in that groupoid.

REMARK 6.16. Here is an equivalent definition of π1(X , x0) that does not mention the word
“groupoid”.

Consider the set S of loops in X that start and end at x0: specifically, elements of S are maps
γ : [0,1] → X such that γ(0) = γ(1). There is an equivalence relation on S given by homotopy
equivalence relative to {0,1} (see Proposition 5.5), and π1(X , x0) is the set of equivalence classes
of S under this relation.

All the work that went into showing that Π(X , A) is a groupoid now specializes to tell us
π1(X , x0) is a group. In brief: Construction 6.1 allows us to compose elements in S and Proposi-
tion 6.4 tells us that this endows π1(X , x0) with a composition operation. Proposition 6.6 tells us
that the composition inπ1(X , x0) is associative. There exists an identity element [ex0 ] ∈π1(X , x0),
by virtue of Definition 6.7 and Proposition 6.8. There exist inverses in π1(X , x0) given by revers-
ing loops, just as in Notation 6.9 and Proposition 6.10.
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CONSTRUCTION 6.17. Suppose f : X → Y is a map of spaces and x0 ∈ X is a point. There
is an induced homomorphism f∗ : π1(X , x0) → π1(Y , f (x0)) given by f∗([γ]) = [ f ◦γ]. This is a
special case of Construction 6.13.

REMARK 6.18. The formation ofπ1(X , x0) from the pointed space (X , x0) is functorial. Specif-
ically, there is a functor:

π1 : Top• → Grp

from the category of pointed spaces to the category of groups. On objects, π1(X , x0) is the fun-
damental group. On morphisms f : (X , x0) → (Y , y0), we set π1( f ) = f∗ as in Construction 6.17.
The verification that this is actually functorial, i.e., that it respects composition and preserves
identities, is left to the reader.

The following are useful results.

PROPOSITION 6.19. Let X be a topological space, let x0 and x1 be points in X and let α be a
path from x0 to x1. There is an isomorphism φα :π1(X , x0) →π1(X , x1) given by γ 7→ [α]−1[γ][α].

PROOF. We consider π1(X , x0) as a subgroupoid of Π(X ). The result we want is an instance
of Proposition B.38. □

PROPOSITION 6.20. Let X and Y be two spaces and let f , g : X → Y be two maps and let
H : X × I → Y be a homotopy between them. Let x0 ∈ X . Let α be the path t 7→ H(x0, t ), from f (x0)
to g (x0), and let φα be as above. Then the diagram

π1(Y , f (x0))

∼= φα

��

π1(X , x0)

f∗
77

g∗

''
π1(Y , g (x0))

commutes.

PROOF. Let γ be a loop in X based at x0. There are two ways of producing a loop in Y , based
at g (x0). First, one can produce (α← · ( f ◦γ)) ·α. Second, one can produce g ◦γ. The homotopy
class (relative to {0,1}) of the first is φα( f∗[γ]) and the class of the second is g∗([γ]). What we
want to prove is that these two loops are homotopic (relative to {0,1}).

Here is an explicit homotopy between them (relative to {0,1}):

E(t , s) =


α(1−4t ) 4t ≤ 1− s

H(γ((4t −1+ s)/(1+3s)), s) 1− s ≤ 4t ≤ 2+2s

α(2t −1) 1+ s ≤ 2t

.

To make sense of this, it helps to recall that α(s) = H(x0, s) and γ(0) = γ(1) = x0. □

COROLLARY 6.21. Suppose f : X → Y is a homotopy equivalence and x0 ∈ X . Then f∗ :π1(X , x0) →
π1(Y , f (x0)) is an isomorphism.
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PROOF. Let g : Y → X be a homotopy inverse for f . The maps g ◦ f : X → X and idX : X → X
are homotopic. Note that we do not require g ( f (x0)) = x0.

Using Proposition 6.20, we deduce that there is an isomorphism

φα :π1(X , (g ◦ f )(x0)) →π1(X , x0)

so that there is an equality of homomorphisms of group φα ◦ (g ◦ f )∗ = (idX )∗. Unwinding a bit,
this says that φα ◦ g∗ ◦ f∗ = idπ1(X ,x0). Since φα is an isomorphism of groups, we deduce that
g∗ ◦ f∗ is an isomorphism of groups so f∗ has a right inverse: (g∗ ◦ f∗)−1 ◦ g∗.

A symmetric argument says that f∗ ◦ g∗ is an isomorphism of groups as well, whereupon
g∗ ◦ ( f∗ ◦ g∗)−1 is a left inverse for f∗.

Any morphism with both a left-inverse and a right-inverse is an isomorphism, so we con-
clude. □

DEFINITION 6.22. A space X is simply connected if X is nonempty, path connected and
π1(X , x0) = {ex0 } for some basepoint x0 ∈ X . Since X is path connected, Proposition 6.19 assures
us that the fundamental groups of X at different basepoints are all isomorphic to each other, so
if one is trivial, they all are.

Simple connectivity also admits a description in terms of fundamental groupoids.

PROPOSITION 6.23. Suppose X is a nonempty topological space. Then the following are equiv-
alent:

• The space X is simply connected;
• For all x, y ∈ X , there exists a unique morphism in Π(X ) from x to y.

PROOF. Suppose X is simply connected and x, y ∈ X are points. Since X is path connected,
there is some path from x to y , so that MorΠ(X )(x, y) is not empty.

Since Π(X ) is a groupoid, the set of morphisms MorΠ(X )(x, y) has a free transitive action by
MorΠ(X )(x, x) = π1(X , x) by composition. Since π1(X , x) is trivial, the transitivity of the action
implies that MorΠ(X )(x, y) is a singleton.

Conversely, suppose that Property 6.23 holds. For any two x, y ∈ X , we can find a path from
x to y , so X is path connected. Furthermore, π1(X , x) consists of a single element, so must be
the trivial group. This implies that X is simply connected. □

REMARK 6.24. Any contractible space is simply connected: for such a space X , we know that
π0(X ) =π0(pt) = [pt] and π1(X , x0) ∼=π1(pt,pt) = [ept].

REMARK 6.25. We saw in Remark 6.18 that the fundamental group is functorial when viewed
as a construction on pointed spaces. If we restrict Proposition 6.20 to basepoint-preserving
maps f : (X , x0) → (Y , y0) and basepoint-preserving homotopies between them, then we deduce
that π1 can be viewed as a functor π : H• → Grp, where the source category here is the “pointed
homotopy category” whose objects are pointed spaces and where the morphisms are basepoint-
preserving-homotopy-classes of basepoint-preserving maps. While this way of putting things
may please people of a categorical turn of mind, it does not do justice to Proposition 6.20, which
is a statement about all homotopies of maps, not only the basepoint preserving homotopies.
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We cannot, however, say that π1 is a functor on H, because it is possible for f , g : X → Y to
be homotopic as maps, so [ f ] = [g ] in H, but for f (x0) ̸= g (x0), so the induced morphisms

f∗ :π1(X , x0) →π1(Y , f (x0)), g∗ :π1(X , x0) →π1(Y , g (y0))

are not the same homomorphisms, having different codomains.
It is evident that π1 has some sort of property rather like ‘functoriality on H’, but articulating

exactly what seems to require dealing with multiple basepoints at once: that is, the functoriality
that we should consider is actually that of Π, not π1. Doing so would require the development
of more category theory, however.

PROPOSITION 6.26. Let {(X j , x j )} j∈J be a family of based topological spaces. Let (X , x) denote
the product, based at the point which projects onto x j for all j . Then there is an isomorphism
π1(X , x) →∏

i∈J π1(X j , x j ) given by (proj j )∗ in the j -th component.

PROOF. In fact, the universal property of products says that a family of maps {gi : [0,1] →
X j } j∈J is equivalent to a single pointed map g = ∏

i∈J gi : [0,1] → X . It is routine to verify that if
g j is actually a loop based at x j , i.e., g j (0) = g j (1) = x j , for all j , then g : [0,1] → X is a loop based
at x.

Similarly, a family of homotopies {Hi : [0,1]×[0,1] → X } j∈J (each of which is relative to {0,1})
is equivalent to a single homotopy

∏
j∈J H j : [0,1]× [0,1] → X , (relative to {0,1}). Using these two

observations, it is routine to show that the homomorphism in the proposition is a bijection. □

3. Functoriality for the Fundamental Groupoid

Homotopy gives us a notion of equivalence for maps between spaces. There is also a notion
of equivalence of morphisms between groupoids, given by natural transformations of functors.

DEFINITION 6.27. Suppose F0,F1 : G → H are morphisms of groupoids. An equivalence ν :
F0 ⇒ F1 consists of a set of morphisms in H , indexed by the objects of G ,

ν= {νg : F0(g ) → F1(g )}g∈obG

such that for all morphisms γ : g → g ′ ∈G , the diagram

F0(g ) F1(g )

F0(g ′) F1(g ′)

F0(γ)

νg

F1(γ)
νg ′

commutes.

NOTATION 6.28. If there exists ν : F0 → F1, we say F0 is equivalent to F1. It is routine to verify
that equivalence is reflexive, symmetric and transitive.

EXAMPLE 6.29. When G , H are groups, F0 and F1 are group homomorphisms, and obG con-
sists of only one object. In this case, an equivalence consists of a single element ν ∈ H such that
νF1 = F0ν. Two group homomorphisms are equivalent if and only if they differ by conjugation
in the target group.
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There is a functor
Π : Top → Groupoid.

PROPOSITION 6.30. If f , g : X → Y are homotopic maps of spaces, then f∗, g∗ are equivalent
homomorphisms of groupoids.





CHAPTER 7

The Van Kampen theorem

1. Van Kampen for Groupoids

The basic problem is as follows. Suppose X =U ∪V where U and V are open sets such that
U ∩V , U and V are connected. Let x0 ∈ U ∩V be a point. Can we determine π1(X , x0) from
π1(U , x0), π1(V , x0) and π1(U ∩V , x0)?

The answer is yes, and in fact, we can do better. We can do the calculation for fundamental
groupoids, of which the fundamental groups are a special case.

PROPOSITION 7.1. Let X be a topological space and let U , V be open subspaces with X =
U ∪V . In the diagram below, the morphisms that are not labelled are all induced by inclusions of
spaces. Let G be a groupoid and suppose that in the diagram below, the outer square commutes.
Then there exists a unique map of groupoids indicated by f making the whole diagram commute.

Π(U ∩V ) //

��

Π(U )

�� g

��

Π(V ) //

h ..

Π(X )
f

""
G

PROOF. A story about groupoids is a story in two parts. The first part is about the objects.
The set of objects of Π(X ) is the underlying set of X , and similarly for the other fundamental
groupoids.

By hypothesis, every point x ∈ X lies in at least one of U or V . Define f (x) = g (x) if x ∈ U
and f (x) = h(x) if x ∈ V . Since g |U∩V = h|U∩V , the function f : obΠ(X ) → obG is well defined
even for points in U∩V , where we apparently had a choice. A moments thought tells us that this
definition of f is the only one that will make the diagram below commute:

obΠ(U ∩V ) //

��

obΠ(U )

�� g

��

obΠ(V ) //

h ..

obΠ(X )
f

%%
obG .

55
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Now we have to worry about morphisms, i.e., homotopy classes of paths in the funde-
mantal groupoids. Suppose γ : I → X is a path in X , from a = γ(0) to b = γ(1). We can find
some decomposition of [0,1] into closed subintervals [t0 = 0, t1], [t1, t2], . . . , [tr−1, tr = 1] such
that for any i , the path γ([ti , ti+1])) lies either in U or in V . Let γi denote a reparametriza-
tion of γ|[ti ,ti−1]. This allows us to define a candidate f ([γ]) as the composite of the images in
G of γ0,γ1, . . . ,γr−1. We have not shown that f ([γ]) is well defined, but observe that if a map
f :Π(X ) →G of groupoids exists making the diagram commute, then it must be this one, since
we have factored [γ] = [γ0][γ1] . . . [γr−1], and what f does to [γ0], [γ1], . . . , [γr−1] is forced on us
by h and g .

Now let us prove that f ([γ]) is an invariant of the homotopy class (relative to {0,1}) of γ : I →
X . That is, if we choose a possibly different path γ′ : I → X such that [γ] = [γ′] and a decomposi-
tion of γ′, we obtain the same definition of f ([γ]).

Suppose we have two paths γ and γ′, a homotopy H : I × I → X relative to {0,1} and two
decompositions of I as above. Using the Lebesgue covering lemma, we can find a tessellation of
I × I into small rectangles Ri j with sides parallel to the sides of I × I and with disjoint interiors
so that for each such rectangle H |Ri j lies either in U or in V , and so that the restrictions of
the tessellation to I × {0} and I × {1} refine the two decompositions of I . Now consider H |Ri j in
each Ri j . They each give a relation in the fundamental groupoid either of U or of V : namely
[H |bottom]+[H |right] = [H |left]+[H |top] where H |bottom denotes the restriction of H to the bottom
edge of the rectangle, and similarly for the other four restrictions. Applying either h or g , as
required, each Ri j gives us a relation in the groupoid G . Integrating these relations together
over the whole square shows that f ([γ]) = f ([γ′]).

The proof that f is really a map of groupoids is not difficult. One simply has to verify that
it preserves composition. The statement that it preserves composition follows by taking a com-
posite [γ][δ] and decomposing each into short paths lying either in U or V : [γ0] . . . [γr−1][δ0] . . . [δs−1].
By construction f ([γ][δ]) is the product in G of f ([γ0) . . . f ([δs−1]) = f ([γ]) f ([δ]). □

COROLLARY 7.2. Let X and U ,V be as above. Let A ⊂U ∩V be a set of points such that each
of path component of U , V and U ∩V contains at least one point of A. In the diagram below,
morphisms that are not labelled are induced by inclusions of spaces. Let G be a groupoid, and
again suppose the outer diagram commutes:

Π(U ∩V , A) //

��

Π(U , A)

�� g

��

Π(V , A) //

h ..

Π(X , A)
f

##
G

Then there exists a unique map of groupoids making the diagram commute.

PROOF. For each x ∈ (U ∩V ) \ A, choose a fixed isomorphism in Π(U ∩V , A) from x to some
point a ∈ A, γ : x → a. By means of this isomorphism, we construct a map of groupoids Π(U ∩
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V ) → Π(U ∩V , A). We can do the same for U and V and X , and where applicable choose the
same isomorphisms.

The rest of the argument follows by showing that the diagram in the corollary is a retract
of the diagram in the proposition. This is a diagram chase that is best done live. We give the
diagram here and advise the reader to do the chase.

Π(V A) //

��

id
--

Π(V )

��

��

// Π(V , A)

��

Π(U ∩V , A) //

��

88

id
--

Π(U ∩V ) //

99

��

Π(U ∩V , A)

88

��

Π(X , A) //

**

Π(X )

��

Π(U , A) //

88

id
--

Π(U )

//

//

99

Π(U , A)

** G

Suppose the diagram with red arrows is given, then one can construct the solid cyan arrows,
then using Proposition 7.1, one constructs the dashed cyan arrow. By composing, one obtains
the dashed green arrow. One then verifies that this is the map f asked for in the corollary. □

REMARK 7.3. The corollary determinesΠ(X , A) up to unique isomorphism. It is the groupoid
one obtains generated by the maps inΠ(U , A) and inΠ(V , A) subject to the relationsΠ(U∩V , A).

EXAMPLE 7.4. Cover S1 ⊂ C by two open sets, S1 \{(0,±1)}. Let A be the set of points {(±1,0)}.
Since we will refer to these often, write p = (1,0) and q = (−1,0). While U = S1 \ {(0,1)} and
V = S1 \ {(0,−1)} are both contractible, U ∩V = S1 \ {(0,1), (0,−1)} is a disjoint union of two con-
tractible sets. In the case of contractible spaces, we understand fundamental groupoids by virtue
of Remark ??

The fundamental groupoids are

Π(U , A) = {φ : q ↔ p :φ−1} Π(V , A) = {ψ : q ↔ p :ψ−1} Π(U ∩V , A) = {q p}

The remark following the corollary suggests that the fundamental groupoid of S1 on the
points {p, q} has two objects and is generated by two different morphisms q → p, with no rela-
tions between them other than what is forced by the groupoid axioms.

To make this precise, let H denote the groupoid whose objects are p and q , and where
there are two different morphisms φ,ψ : q → p and no relations between them, i.e., the set of
morphisms q → p consists of all strings of the forms

• φψ−1φ · · ·ψ−1φ;
• ψφ−1ψ · · ·φ−1ψ.
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One can give similar enumerations of the sets of morphisms p → p, q → p and q → q in this
groupoid based on this description.

We can define a functorΠ(U , A) →H by the identity on objects and byφ 7→φ on morphisms
Similarly, we can define a functor Π(V , A) → H by the identity on objects and by ψ 7→ ψ on
morphisms. The diagram

Π(U ∩V , A) //

��

Π(U , A)

��
Π(V , A) // H

commutes—there is virtually nothing to check here.
Next, we verify that the groupoid H has the universal property we would like. The diagram

encapsulating this property is given:

Π(U ∩V , A) //

��

Π(U , A)

��

��

Π(V , A) //

..

H

##
G .

Again, there is very little to check: we know where p, q must go to in obG , and we know where
φ,ψ must go to in MorG . The fact that no relations were imposed between φ,ψ in H means
that nothing can go wrong, and the dashed arrow really does exist.

Therefore H has the required universal property, and for the usual universal property rea-
sons, it is the fundamental groupoid Π(S1, A), at least up to unique isomorphism. Based on our
specific construction, where obH ⊂ S1 and where φ,ψ really are classes of paths in S1, the
groupoid H actually is Π(S1, A), rather than being ‘merely’ uniquely isomorphic to it.

We can calculate the fundamental group π1(S1, p) by simply remembering all the maps p →
p in Π(S1, p). This group is infinite cyclic, generated by ψφ−1. That is to say, it is generated by a
loop that goes around the circle once counterclockwise.

We have proved:

PROPOSITION 7.5. Let p = (1,0). Then π1(S1, p) is an infinite cyclic group generated by the
class of the loop γ : [0,1] → S1 given by γ(t ) = (cos2πt , sin2πt ).

CONSTRUCTION 7.6. Let G and H be two groups. A word in G and H is a string of elements
s1 . . . sn , each one either in G or H . They are subject to reduction, i.e., removing an identity el-
ement or replacing a pair g1g2 by its product in G , or similarly in H . A reduced word is a word
that cannot be reduced further.

The free product G ∗ H is the group of reduced words, with concatenation-followed-by-
reduction as an operation.

There are obvious homomorphisms G →G ∗H and H →G ∗H .
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REMARK 7.7. Strictly speaking, the definition above presupposes that G and H are disjoint
groups. If not, then we replace G and H by disjoint isomorphic groups before forming the free
product.

DEFINITION 7.8. Let G , H and K be three groups and φ : K → G , ψ : K → H be homomor-
phisms. The notation G ∗K H denotes the pushout of G and H over K . This is the quotient of
G ∗H by the normal subgroup generated by elements φ(k)ψ(k)−1 as k ranges over the elements
in K . This is sometimes called the amalgamated product of G and H over K , although some
people prefer to reserve the term “amalgamated product” for when φ,ψ are both inclusions.

REMARK 7.9. Strictly, the homomorphisms φ andψ should appear in the notation, but they
do not.

As in the free case, there are homomorphisms ιG : G →G ∗K H and ιH : H →G ∗K H . In this
case, these homomorphisms make the diagram

K

φ

��

ψ // H

��
G // G ∗K H

commute. If G∗K H were replaced by G∗H , then this diagram would not generally commute. In
what follows below, we will omit the homomorphisms ιG and ιH from the notation: if an element
g ∈G is to be considered as an element of G ∗H , it is understood that ιG (g ) is meant.

LEMMA 7.10. Suppose there is a groupoid M and there are homomorphisms α : G → M and
β : H → M making the diagram below commute (without the dashed arrow)

(1) K

ψ

��

φ // G

ιG
�� α

��

H
ιH //

β ..

G ∗K H
δ

##
M .

Then there exists a unique homomorphism δ making the diagram commute.

PROOF. It is actually sufficient to consider the case where M is a group, since only one object
of the groupoid M is ever considered. So suppose M is a group.

Consider the case where φ,ψ are trivial, so that G ∗K H =G ∗H . Then each element of G ∗H
can be written as a word w = g1h1 . . . gr hr (it is possible that g1 or hr is the identity element).
In this case, we define δ′(w) =α(g1)β(h1) . . .α(gr )β(hr ). It is routine to verify that this is a group
homomorphism. Once that is verified, it is immediate that δ′ is the unique homomorphism

such that G →G ∗H
δ′→ M agrees with α and G →G ∗H

δ′→ M agrees with β.

In the general case, when φ and ψ are not trivial, we construct δ as a quotient of δ′. Let N
denote the normal subgroup of G ∗H generated by words of the form φ(k)ψ(k)−1. Observe that
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δ′(φ(k)ψ(k)−1) = e ∈ M for all k ∈ K , so that N ⊂ kerδ′. Therefore there is an induced homomor-
phism: δ : G ∗K H → M .

Verifying that this makes the diagram of (1) commute and is unique with this property is
routine and is left as an exercise. □

COROLLARY 7.11 (The Van Kampen theorem). Let X be a topological space with basepoint
x0, and U ,V path connected open subsets that cover X and such that U ∩V is path connected and
contains x0. Then π1(X , x0) can be identified with π1(U , x0)∗π1(U∩V ,x0)π1(V , x0), where the mor-
phismsπ1(U∩V , x0) →π1(U , x0) andπ1(U∩V , x0) →π1(V , x0) are those induced by the inclusions
of subspaces.

PROOF. Under the hypothesis that U ,V ,U ∩V are all path connected and x0 ∈U ∩V , we can
apply Corollary 7.2 with A = {x0}, i.e, the Van Kampen theorem for groupoids. That tells us that
π0(X , x0) has a universal property that is also possessed byπ1(U , x0)∗π1(U∩V ,x0)π1(V , x0), accord-
ing to Lemma 7.11. A standard argument now says thatπ1(X , x0) is isomorphic toπ1(U , x0)∗π1(U∩V ,x0)

π1(V , x0), and the isomorphism is uniquely specified if we require it to be compatible with the
already-given homomorphisms fromπ1(U , x0) andπ1(V , x0) to each ofπ1(X , x0) andπ1(U , x0)∗π1(U∩V ,x0)

π1(V , x0). This is the result. □

2. Examples

EXAMPLE 7.12. Suppose X is a space that can be written as the union of two open sets U and
V where U and V are both simply connected and where U ∩V is path connected. Let x0 ∈U ∩V
be a basepoint. Then by use of the Van Kampen theorem:

π1(X , x0) ∼=π1(U , x0)∗π1(U∩V ,x0)π1(V , x0) = {e}∗π1(U∩V ,x0) {e} ∼= {e}.

This implies that π1(X , x0) = {e}.

EXAMPLE 7.13. A special case of the previous example is the case of π1(Sn , s0) whenever
n ≥ 2. To see that this case applies, consider

s0 = (1,0,0, . . . ,0), s′0 = (−1,0,0, . . . ,0)

both of which are points on Sn . We know that Sn \ {s0} ≈ Rn , since Sn is a one-point compactifi-
cation of Rn . Similarly, Sn \ {s′0} ≈ Rn .

For all n, we deduce Sn \ {s0, s′0} ≈ Rn \ {0}, and if n ≥ 2, then this is path connected (it is
disconnected for n = 1). We may then apply Example 7.12 to deduce that π1(Sn , s′0) ∼= {e} when
n ≥ 2.

We will not prove it in this course, but the spaces S2,S3, . . . give examples of spaces that are
simply connected but not contractible.

EXAMPLE 7.14. Suppose (X , x0) and (Y , y0) are two based spaces, and suppose x0 ∈ X has
an open neighbourhood U ∋ x0 such that {x0} is a (strong) deformation retract of U —i.e., a
deformation retract in which the homotopy is relative to {x0}—, and similarly y0 has an open
neighbourhood V such that {y0} is a strong deformation retract of V . A schematic picture is
given in Figure 1.
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FIGURE 1. The open sets U and V in X ∨Y .

Form the space X ∨Y , and denote the basepoint by z. Consider the two open subspaces X ∨
V and U ∨Y . We observe that X ⊂ X ∨V is a deformation retract and Y ⊂U ∨Y is a deformation
retract as well. Moreover,

U ∨V = (X ∨V )∩ (U ∨Y )

is contractible (it has the basepoint as a deformation retract).
We can apply the Van Kampen theorem to deduce π1(X ∨Y , z) ∼=π1(X , x0)∗π1(Y , y0).

REMARK 7.15. The conditions that Example 7.14 requires of the based spaces (X , x0) and
(Y , y0) are frequently satisfied in practice: for instance, if X and Y are topological manifolds,
so that every point of X and Y has an open neighbourhood homeomorphic to Rn , then these
conditions are satisfied.

FIGURE 2. The set U ∨V admits the basepoint as a deformation retract

We also remark that under the same hypotheses as Example 7.14, the wedge sum X ∨Y has
an open neighbourhood U ∨V that admits the basepoint z as a deformation retract. Therefore,
the idea in Example 7.14 can be iterated.

EXAMPLE 7.16. As a special case of Example 7.14, we can calculate π1 of any iterated wedge
sum of circles:

X =
k-copies︷ ︸︸ ︷

S1 ∨S1 ∨·· ·∨S1 .

Write Fn for the free group generated by n symbols: x1, x2, . . . , xn (and no relations, so that
in particular, for n ≥ 2, the group Fn is not abelian).
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By a direct induction argument

π1(X , z) =π1(

k −1-copies︷ ︸︸ ︷
S1 ∨·· ·∨S1, z)∗π1(S1, s0) ∼= Fk−1 ∗F1

∼= Fk .

EXAMPLE 7.17. Let us show explicitly a presentation of π1(S1 ∨S1, z). In order to make the
presentation more obvious, we replace S1 ∨S1 with a slightly larger space X , that is homotopy
equivalent to it (there is an obvious deformation retract).

Two generators for π1(X , z) are illustrated in Figure: α and β.

FIGURE 3. A space that is homotopy equivalent to S1 ∨S1, and chosen genera-
tors for π1(X , z).

The fundamental group in this case is not abelian, and you can verify that a loop in the class
of αβ−1 (first go around the loop on the left, then on the right, illustrated in Figure 4) is not

FIGURE 4. A loop in the class of αβ−1.

homotopic (relative to endpoints) to a loop in the class of αβ−1 (first go around the loop on the
right, then on the left, illustrated in Figure 5)
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FIGURE 5. A loop in the class of β−1α.

EXAMPLE 7.18. Here we consider the complement of two points, p, q in R2. Pick any base-
point x0 ∈ R2 \ {p, q}. The complement R2 \ {p, q} is homotopy equivalent to S1 ∨ S1, and so
π1(R2 \ {p, q}, x0) is a free group on two generators. One generator, α, may be taken to be a loop
around p in the anticlockwise direction and the other generator may be taken to be β, a loop
around q in the anticlockwise direction.

FIGURE 6. R2 \ {p, q} and chosen generators for π1.

We may consider an element in π1(R2 \ {p, q}, x0) such as w =α−1βαβ−1, but that becomes
trivial if we apply any homomorphism π1(R2 \ {p, q}, x0) → G where either α 7→ e or β 7→ e. A
loop in the class of α−1βαβ−1 is illustrated in Figure 7. This picture (and ones like it) are often
referred to as solutions to the “two nails problem". The idea is to view the plane, R2, as a wall
on which one wishes to hang a picture. Then two nails are hammered into the wall, at p and q ,
then a piece of string is tied in a loop and wound around p and q as illustrated in Figure 7. A
picture can be hung from this piece of string, and it will not fall to the floor, because the element
α−1βαβ−1 is not trivial, and therefore the string cannot be detached from the nails—if you could
detach it from the nails, you would then be able to contract the loop to a point.

If one or other nail is removed, however, i.e., if either p or q is returned to the plane, then
the loop will become contractible again. For instance, if p is filled in, so the loop is viewed as
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FIGURE 7. A loop in the class of α−1βαβ−1.

representing an element in π1(R2 \ {q}, x0) = Zβ, by applying the homomorphism

φ :π1(R2 \ {p, q}, x0) →π1(R2 \ {q}, x0)

given by φ(α) = e and φ(β) = β. We observe that φ(α−1βαβ−1) = ββ−1 = e. You can verify this
yourself by visualizing a contraction of the loop to the basepoint, provided p is added back to
R2. An intermediate stage of the contraction is illustrated in Figure 8.

FIGURE 8. A loop representing the trivial element in π1(R2 \ {q}, x0).

The effect of removing the nail at q is similar, again the class of the loop becomes trivial.

EXAMPLE 7.19. In this example, we calculate π1(S1 ×S1, x0). From Proposition 6.26, we al-
ready know that π1(S1 ×S1, x) ∼= π1(S1, s0)×π1(S1, s0) ∼= Z×Z, the free abelian group of rank 2.
Here, we give another proof of this fact.
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FIGURE 9. Two open subsets covering the torus.

FIGURE 10. A loop γ in U ∩V .

Cover S1 ×S1 by two open sets U and V , as indicated in Figure 9.
The open set U is homotopy equivalent to S1∨S1 (it admits S1∨S1 as a deformation retract).

The open set V is contractible, since it is homeomorphic to an open ball in R2. The intersection
U ∩V is homotopy equivalent to S1. This gives us the following list of homotopy groups:

π1(U , x0) = 〈α,β〉
π1(V , x0) = {e}

π1(U ∩V , x0) = 〈γ〉
We can now use the Van Kampen theorem to present

π1(S1 ×S1, x0) ∼=π1(U , x0)∗π1(S1,x0) {e}.

In order to finish the calculation, we must determine the homomorphisms φ : π1(U ∩V , x0) →
π1(U , x0) and ψ : π1(U ∩V , x0) → π1(V , x0). The latter of these is trivial. We concentrate on the
former. We see from Figure 10 that φ(γ) =αβα−1β−1. Therefore the Van Kampen Theorem says
that

π1(S1 ×S1, x) ∼= 〈α,β|αβα−1β−1〉,
that is, the quotient of the free group by the normal subgroup generated by αβα−1β−1. This is a
presentation of the free abelian group on two generators, which is what we expected.





CHAPTER 8

Covering spaces

1. Covering Spaces

DEFINITION 8.1. A map of topological spaces f : Y → X is a covering space map if, for all
x ∈ X , there is some open U ∋ x such that the inverse image f −1(U ) is homeomorphic to a
disjoint union

∐
j∈J V j such that each induced map f |V j : V j →U is a homeomorphism.

REMARK 8.2. Some people might require the map f to be surjective, but we do not.

EXAMPLE 8.3. The prototypical examples are fn : S1 → S1 given by z 7→ zn , and f∞ : R → S1

given by f∞(t ) = (cos2πt , sin2πt ).

EXAMPLE 8.4. Other, more trivial, examples, include X
∐

X → X or the inclusion of open
component into a disconnected but locally connected space. These are sort of silly, so we gen-
erally concentrate in examples on the cases where both X and Y are connected.

DEFINITION 8.5. A map of topological spaces f : Y → X is an étale map if it is locally an open
embedding: that is, if each y ∈ Y has an open neighbourhood Uy such that f |Uy : Uy → X is an
open embedding.

EXAMPLE 8.6. Both covering space maps and open embeddings are étale.

EXAMPLE 8.7. In general, open embeddings are not covering space maps. For instance, the
inclusion of an open set U ,→ X that is not also closed is an étale map but not a covering space
map (consider neighbourhoods of a point x ∈ ∂U ).

PROPOSITION 8.8. A covering space map is open.

DEFINITION 8.9. Let f : Y → X be a map and let x ∈ X . Define the fibre of f at x to be f −1(x),
and denote it Fx .

NOTATION 8.10. Let f : Y → X be a covering space and let W ⊂ X be an open set. We say
that f trivializes over W if f −1(W ) is a disjoint union of open sets mapping homeomorphically
to W .

Here comes a technical and very important proposition.

PROPOSITION 8.11. Suppose f : Y → X is a covering map and that Z is a space. Write i0 :
Z × {0} → Z × [0,1] for the inclusion at 0. Suppose that that there are maps as indicated making

67
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the diagram (without the dashed arrow) commute:

(2)
Z × {0} Y

Z × [0,1] X .

g̃0

i0 f
g̃

g

Then there is a unique map g̃ making both triangles commute.

A continuous function such as g̃ making the lower triangle commute is called a lift of g .

LEMMA 8.12. Assume the hypotheses of Proposition 8.11. Assume that Z has an open cover
{Um}m∈M with the following property: Whenever V ⊂Um for some m ∈ M, there exists a unique
lift in the diagram

V × {0} Y

V × [0,1] X .

g̃0|V ×{0}

i0|V ×{0} f
g̃ |V ×[0,1]

g |V ×[0,1]]

Then the conclusion of Proposition 8.11 holds.

PROOF. We must define a continuous lift g̃ : Z × [0,1] → Y , and then show it is the unique
lift.

To define g̃ , we need only observe that it has already been defined on each set in an open
cover {Um × [0,1]}m∈M of Z × [0,1], and if z ∈ Um ∩Um′ , then the restrictions of g̃ |Um×[0,1] and
g̃ |Um′×[0,1] to {z} × [0,1] agree by uniqueness of the lifts. Therefore our various definitions of
g̃ |Um×[0,1] glue to give a lift g̃ : Z × [0,1] → Y .

To establish uniqueness of g̃ , suppose for the sake of contradiction that there are two lifts, g̃
and g̃ ′ and that they do not agree. Then there is some z ∈ Z for which g̃ |{z}×[0,1] ̸= g̃ ′|{z}×[0,1], but
since z ∈Um for some m, this contradicts the hypotheses of the lemma. □

LEMMA 8.13. Assume all the hypotheses of Proposition 8.11, and also suppose that f : Y → X
is a trivial covering space, in that Y is homeomorphic to

∐
j∈K X j where f |X j X j → X is a homeo-

morphism. Then the conclusion of Proposition 8.11 holds.

PROOF. Identify Y = ∐
j∈J X j , so that each X j ⊂ Y is an open subset. Write Z j = g |−1

0 (X j ).
The Z j form an open cover of Z , so by Lemma 8.12, it suffices to prove the lemma under the
assumption that there exists some unique j for which g |0(Z ) ⊂ X j .

To define g̃ , we set g̃ = f |−1
X j

◦ g . To verify uniqueness, suppose for the sake of contradiction

that there is some lift g̃ ′ : Z × [0,1] → Y different from f |−1
X j

◦ g . We deduce that there must be

some (z, t1) such that g̃ ′(z, t1) ̸∈ X j , or else

g̃ ′(z, t1) = f |−1
X j

◦ f ◦ g̃ ′(z, t1) = g̃ (z, t1).

There is some j ′ so that g̃ ′(z, t1) ∈ X j ′ . But now g̃ ′(z, t ) gives a path joining g0(z,0) ∈ X J and
g̃ ′(z, t1) ∈ X j ′ , which is impossible. This establishes uniqueness. □
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LEMMA 8.14. Assume all the hypotheses of Proposition 8.11. Let {W j } j∈J be an open cover of
X trivializing f , and let V ⊂ Z be a subset such that there exists a partition

[t0 = 0, t1]∪ [t1, t2]∪·· ·∪ [tr−1, tr = 1]

of [0,1] such that for all l ∈ {1, . . . ,r } there exists some j for which g−1(V × [tl−1, tl ]) ⊂ W j . Then
the conclusion of Proposition 8.11 holds for all subsets S ⊂ V , in that there exists a unique map
g̃ |S×[0,1] making the diagram

S × {0} Y

S × [0,1] X .

g̃0|S×{0}

i0 f
g̃ |S×[0,1]

g |S×[0,1]

commute.

PROOF. There is nothing to be lost in assuming V = S throughout.
To simplify the notation, we omit many notations that signify “restriction to S” in this proof.

Nothing is defined on any subset of Z larger than S in this proof.
We produce the lift g̃ and prove it is unique by induction on l . The base case and the general

case proceed similarly. Suppose that a map g̃ has been defined on S×[0, tl−1]—in the base case,
this is a point and in general it is a compact interval of positive length. In particular g̃ (s, tl−1) has
been defined for all s ∈ S. The additional hypothesis of the lemma is that g (S×[tl−1, tl ]) ⊂W j for
some j , and commutativity of the diagram implies that f (g̃ (s, tl−1)) = g (s, tl ) for all s ∈ S.

The cover f trivializes over W j , so we may apply Lemma 8.13 to get a lift in the diagram
(following reparametrization):

S × {tl−1} f −1(W j )

S × [tl−1, tl ] W j .

g̃ |S×{tl−1}

i0 f | f −1(W j )

g |S×[tl−1,tl ]

g̃ |S×[tl−1,tl ]

This furnishes a unique extension of g̃ from S × [0, tl−1] to S × [0, tl ], completing the induction
step. □

PROOF OF PROPOSITION 8.11. Fix an open cover {W j } of X that trivializes f .
It suffices to show that Z has an open cover {V j } such that each V j satisfies the hypotheses

of Lemma 8.14. The result will then follow by applying Lemma 8.12 to the open cover {V j }.
For each z ∈ Z , the space {z} × [0,1] is compact and {g−1(W j )} is an open cover. By the

Lebesgue Covering Lemma (3.14), we may find some partition [t0 = 0, t1]∪[t1, t2]∪·· ·∪[tr−1, tr =
1] such that for all l ∈ {1, . . . ,r } there exists some jl for which {z}× [tl−1, tl ] ⊂ g−1(W jl ). By the
Tube Lemma (3.11), for each l ∈ {1, . . . ,r }, we can find an open set Ul ∋ z so that Ul × [tl−1, tl ] ⊂
g−1(W jl ). Then set Vz = ⋂r

l=1 Ul . This Vz is an open set containing z for which Vz × [tl−1, tl ] ⊂
g−1(W jl ) for all l ∈ {1, . . . , l }. That is, Vz satisfies the hypotheses of Lemma 8.14. Since z was arbi-
trary, we can cover Z by open sets Vz , proving the proposition. □
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1.1. Path lifting and the fundamental groupoid. Proposition 8.11 allows us to make the
following construction.

CONSTRUCTION 8.15. Let X be a topological space. Let f : Y → X be a covering space. For
each a ∈ X , define Fa = f −1(a), which is a discrete topological space, i.e., a set. For each path γ
in X from a to b, define a function γ̃ : Fa → Fb as follows.

Given an element y ∈ Fa , there exists a unique lift Γ in the diagram
by constructing the unique lift in

{0}
0 7→y //

��

Y

��
[0,1]

γ //

Γ

<<

X .

Now define γ̃(y) = Γ(1) ∈ Fy .

PROPOSITION 8.16. The map γ̃ defined above depends only on [γ], the homotopy class of γ
(rel. endpoints).

PROOF. Continue to write a = γ(0) and b = γ(1), and let y ∈ Fa be some element. Give Γ the
same definition as above.

Suppose δ : [0,1] → X is another path and H : [0,1]× [0,1] → X happens to be a homotopy
from γ to δ relative to {0,1}. Specifically,

H(t ,0) = γ(t ) ∀t ∈ [0,1],

H(t ,1) = δ(t ) ∀t ∈ [0,1],

H(0, s) = a ∀s ∈ [0,1],

H(1, s) = b ∀s ∈ [0,1].

Using Proposition 8.11, we see that there is a unique lift making this diagram commute:

[0,1]× {0} Y

[0,1]× [0,1] X .

i0

Γ

f

H

H̃

We now investigate the lift H̃ : [0,1]× [0,1] → Y , exploiting the uniqueness part of 8.11.

(1) Along the segment [0,1]× {0}, the map H̃ is a lift of γ starting at Γ(0) = x, and therefore
is Γ.

(2) Along the segment {0}×[0,1], the map H̃ is a lift of ea starting at y . Since ex is a possible
lift of this path, uniqueness of lifts tells us that H̃(0, s) = Γ(0) = y for all s ∈ [0,1];

(3) A similar argument says that H̃(1, s) = Γ(1) = γ̃(x);
(4) Along the segment [0,1]× {1}, the map H̃ is a lift of δ starting at y . Let us call this path

∆ : [0,1] → Y .

Observe that ∆(1) is δ̃(y) by definition.
On the one hand, H̃(1,1) = eΓ(1(1) = γ̃(y), while on the other hand H̃(1,1) = ∆(1) = δ̃(y).

Therefore γ̃(y) = δ̃(y) as desired. □
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In order to keep the notation from becoming littered with [·] symbols, we will write γ instead
of [γ] from now on. We will have to rely on context to determine when γ (the path) is meant and
when [γ] (the homotopy class of the path) is meant, but this will turn out not to be difficult to
do.

Now come two small, but very helpful, results about lifting compositions of paths.

PROPOSITION 8.17. Suppose f : Y → X is a covering space and γ,δ are two paths in X such
that γ(1) = δ(0). Then the two functions

δ̃◦ γ̃ : Fγ(0) → Fδ(1)

and �(γ ·δ) : Fγ(0) → Fδ(1)

agree.

PROOF. Choose a point y ∈ Fγ(0). Let Γ : I → Y denote the unique lift of γ to Y that starts at
y . Let ∆ : I → Y be the unique lift of δ to Y that starts at Γ(1). Then Γ ·∆ is defined and is in fact
a lift of γ ·δ that starts at y . It is therefore the unique such lift. We now can compare:

δ̃◦ γ̃(y) =∆(1) =∆ ·Γ(1) = γ̃ ·δ(y),

which is what we wanted. □

PROPOSITION 8.18. Suppose f : Y → X is a covering space, and ex : I → X is the constant path
at x ∈ X . Then ẽx : Fx → Fx is the identity map.

PROOF. If y ∈ Fx , then the unique lift of ex starting at y is ey . □

PROPOSITION 8.19. Suppose f : Y → X is a covering space. The following construction:

x 7→ Fx ,

[γ : x → y] 7→ γ̃.

is a functor F :Π(X ) → Set.

PROOF. Proposition 8.16 ensures that this is well defined on morphisms. Functoriality is
given by Propositions 8.17 and 8.18. □

COROLLARY 8.20. Suppose f : Y → X is a covering space and γ : [0,1] → X is a path, then
γ̃ : Fγ(0) → Fγ(1) is a bijection.

In particular, if X is path-connected, then every fibre is in bijective correspondence with every
other fibre.

PROOF. The path γ is an isomorphism in Π(X ), and therefore induces an isomorphism of
sets, γ̃ : Fγ(0) → Fγ(1), i.e., a bijection. □
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2. Fundamental group action

In the previous section, we saw that if f : Y → X is a covering space, then a path γ in X
induces a bijection Fγ(0) → Fγ(1). In particular, when γ is a loop based at x ∈ X , we obtain an au-
tomorphism of Fx . These automorphisms are compatible with composition of paths, according
to Proposition 8.17, although there is a reversal of the order.

CONSTRUCTION 8.21. Suppose f : Y → X is a covering space and x ∈ X is a point. For each
γ ∈π(X , x) and each y ∈ Fx , define y ·γ to be γ̃(y) ∈ Fx , i.e., the endpoint of the path in Y obtained
by lifting γ, starting at y .

The assignment (y,γ) 7→ y ·γ is a function Fx ×π1(X , x) → Fx .

PROPOSITION 8.22. The function Fx×π1(X , x) → Fx defined above is a right action ofπ1(X , x)
on Fx .

PROOF. To prove this is a right action, we have to prove two things:
First, we want to show y ·ex = y , where ex denotes the constant loop at x. This is Proposition

8.18
Second, (y ·γ) ·δ= y · (γδ). This is a special case of Proposition 8.17. □

NOTATION 8.23. This action of π1(X , x) on the fibre over x is called the monodromy action.

REMARK 8.24. There is a category of covering spaces of X where the objects are maps f : Y →
X and the maps are maps h : Y → Y ′

Y

f ��

h // Y ′

f ′
~~

X

making the diagram commute. Write this category as CovX .
There is an obvious category of right π1(X , x0)-sets, written Set-π1(X , x0).

We now discuss the relationship, for a covering space f : X → Y , between π1(Y , y), π1(X , x)
and the fibre Fx .

PROPOSITION 8.25. Let f : Y → X be a covering space. Fix a basepoint x ∈ X . Two points
y, y ′ ∈ Fx lie in the same orbit of the π1(X , x)-action if and only if y and y ′ lie in the same path
component of Y .

PROOF. Suppose y, y ′ are in the same path component of Y . Then there is a path Γ from y
to y ′ in Y . Define γ= f ◦Γ : [0,1] → X from x to x. This gives us a class γ ∈π1(X , x). To determine
y ·γ, take the lift of γ starting at y , which is Γ, and evaluate it at 1. This gives us y ·γ= y ′.

Suppose conversely that y ·γ= y ′. If we lift γ to a path Γ : [0,1] → Y that starts at y , we must
get a path ending at Γ(1) = y ′. Therefore y and y ′ are in the same path component of Y . □

Next, we investigate path components of Y .
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PROPOSITION 8.26. Let f : Y → X be a covering space, and choose basepoints y ∈ Y and
x = f (y) ∈ X . The map f∗ : π1(Y , y) → π1(X , f (x)) is injective, and the image is the stabilizer
subgroup of the action of π1(X , x) on y.

PROOF. First we verify injectivity. Suppose f∗(Γ) = ex in π1(X , x). That is, f ◦Γ≃ ex rel. {0,1}.
Thefore, the lifts of these two paths in X to paths in Y starting at Y are homotopic rel. {0,1}. One
lift is Γ and the other is ey . This implies Γ is trivial in π1(Y , y), as required.

Next we verify the image is as claimed. For an arbitrary γ ∈π1(X , x), the element y ·γ ∈ Fx is
defined by lifting γ to a path Γ : [0,1] → Y starting at y , then evaluating at 1. We see that y ·γ= y
if and only if γ has a lift to some Γ ∈π1(Y , y), i.e., if and only if γ= f∗(Γ) for some Γ ∈π1(Y , y). □

COROLLARY 8.27. Suppose f : Y → X is a covering space and x ∈ X is a basepoint. Consider
the action of π1(X , x) on Fx . If Y is path connected, then this action is transitive. If Y is simply
connected and Fx is not empty, then the action is also free.

PROOF. The first statement, about transitivity of the action, is immediate from Proposition
8.25.

The second statement follows from Proposition 8.26: a transitive action is free if and only if
the stabilizer of one point (and therefore of every point) is trivial. □

DEFINITION 8.28. Let X be a path-connected space. For reasons that may be clarified later,
a simply-connected covering space f : X̃ → X is called a universal covering space of X .

Let X be a space and x ∈ X a basepoint. We can use a universal covering space f : X̃ → X to
calculate π1(X , x) by exploiting the free transitive action of π1(X , x) on Fx . Choose a basepoint
y0 ∈ Fx . This sets up a bijection of sets Fx → π1(X , x) where each y ∈ Fx corresponds to the
unique γ ∈ π1(X , x) such that y0 ·γ = y . To figure out what γ is from the knowledge of y , we
do the following: find a path Γ : [0,1] → Y from y0 to y . Since Y is simply connected, this Γ is
uniquely determined up to homotopy rel. {0,1}. Then γ= f ◦Γ.

This sets up a bijection of sets: Fx →π1(X , x). Determining the group structure from this is a
little clunky, because Fx is not itself a group. You can argue as follows: Suppose y, y ′ ∈ Fx are two
elements, corresponding to γ,γ′ ∈π1(X , x). Then γγ′ corresponds to the element of Fx obtained
by taking an explicit representative γ′ : [0,1] → X , then lifting this to a path starting at y . The
endpoint of the lift corresponds to γγ′.

EXAMPLE 8.29. Consider the covering space map f∞ : R → S1 given by f∞(r ) = (cos(2πr ),sin(2πr )).
Observe that R is contractible and therefore is simply connected, so is a universal cover of S1.

Endow S1 with the basepoint p = (1,0). Then Fp = Z ⊂ R by elementary trigonometry. For all
x, y ∈ Z, let us define

Γ[x,y] : [0,1] → R, Γ[x,y](t ) = x + (y −x)t .

This is a path starting at x and ending at y . By the same elementary trigonometry as before, the
loops f ◦Γ[x,y] depend only on the difference y −x.

Endow Fp with the basepoint 0. This gives us a bijection π1(X , x) ↔ Z, given explicitly by
m 7→ f∞ ◦Γ[0,m]. That is, m is assigned to the loop

γm : [0,1] → S1, γm(t ) = (cos(2πmt ),sin(2πmt )).
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To compose γm ,γm′ , we must lift γm′ to a path starting at m ∈ Z . Such a lift is given by
Γ[m,m+m′]. Now we calculate the endpoint of the composite Γ[0,m] ·Γ[m,m+m′], which is m +m′.
This is the value in Z = Fp corresponding to γmγm′ .

We have deduced, in a different way from Example 7.4, that π1(S1, p) ∼= Z, generated by the
loop t 7→ (cos(2πt ),sin(2πt )).

3. Lifting of general maps to covering spaces

PROPOSITION 8.30. Let f : Y → X be a covering space and let y0 ∈ Y be a basepoint and
x0 = f (y0). Let (Z , z0) be a pointed space where Z is path connected and locally path connected.
Let g : (Z , z0) → (X , x0) be a map. Suppose im(g∗ : π1(Z , z0) → π1(X , x0)) ⊂ im( f∗ : π1(Y , y0) →
π1(X , x0)). Then there exists a unique continuous lift h making the diagram

Y

f
��

Z

h
??

g // X

commute.

PROOF. Define h as a function as follows: if z ∈ Z , then let γ be a path in Z from z0 to z. The
image under g of γ is a path in X from x0 to g (z). This path has a unique lift to a path γ̃ from y0

to γ̃(1). Define h(z) = γ̃(1).
This definition seems to depend on the choice of γ. Let us show that it is really independent

of that choice. Suppose δ is a path in Z from z0 to z, possibly different from γ. Then δγ← is a
loop in Z , and so g (δγ←) is a loop in X . The hypothesis on the fundamental groups implies that
g (δγ←) ∈π1(X , x0) acts trivially on y0, so that (δγ←) lifts to a loop, based at y0. By uniqueness of
lifting, this loop must be δ̃γ̃←, so that in particular, δ̃(1) = γ̃(1). This implies that the definition
of h(z) was independent of the choice of path.

We must show that the function h that we defined is continuous. Suppose W ⊂ Y is an open
set and h(z) ∈ W . We can find an open neighbourhood U ∋ h(z) and U ⊂ W such that f |U is
a homeomorphism onto an open set. Note that g (z) ∈ f (U ). Since g is continuous, there is an
open set V ∋ z such that V is path connected and such that g (V ) ⊂ f (U ). Take any z ′ ∈V . There
exists a path ϵ from z to z ′ in V , and by composing γϵ, we obtain a path from z0 to z ′. We may
use this path to calculate h(z ′) = γ̃ϵ̃(1). By uniqueness of lifting, ϵ̃ lies entirely within U , and
therefore h(z ′) = γ̃ϵ̃(1) lies in U . It follows that z ∈U ⊂ h−1(W ). Since z was arbitrary in W , the
function h is continuous.

Finally, we show that h is unique. Suppose h′ is another lift and h(z) ̸= h′(z). Let γ : I → Z be
a path from z0 to z ′, then h ◦γ and h′ ◦γ give two different lifts of the path g ◦γ both starting at
y0. This is impossible. □

4. The classification of covering spaces

We have seen that if f : Y → X is a covering space and x ∈ X , then the fibre FX is a (discrete)
set with a right π1(X , x)-action.
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DEFINITION 8.31. Let X be a topological space and f1 : Y1 → X , f2 : Y2 → X be two covering
spaces. A map of covering spaces h : Y1 → Y2 is a map of spaces that also satisfies f1 = f2 ◦h, i.e.,
it makes

Y1
f1

  

h // Y2
f2

~~
X

commute.

PROPOSITION 8.32. If h : Y1 → Y2 is a map of covering spaces and x ∈ X is a point, then there
is an induced function hx : f −1

1 (x) → f −1
2 (x) given by hx (y) = h(y). This function is compatible

with the right π1(X , x)-actions on the fibres in the sense that

h(y ·γ) = h(y) ·γ
PROOF. To form y ·γ, we lift γ to a path Γ in Y1 starting at y . Then h ◦Γ is the unique lift of γ

in Y2 starting at h(y).
h(y) ·γ= h ◦Γ(1) = h(y ·γ).

□

REMARK 8.33. That is, a map of covering spaces yields an induced morphism of fibres as
sets with right π1(X , x) action. It is easy to verify that;

(1) The morphism on fibres induced by the identity is the identity.
(2) If h1 and h2 are two composable maps of covering spaces, then (h2)x◦(h1)x = (h2◦h1)x .

Taken together, these imply that we have a functor

Fibre at x: Covering spaces of X → Sets with right π1(X , x)-action.

Under mild hypotheses on X (including path connectedness), this functor tells you every-
thing about the covering spaces of X . Specifically:

(1) All sets with a right π1(X , x)-action arise as the fibre of some covering space (Propo-
sition 8.38), provided X is connected, locally path connected and semilocally simply
connected.

(2) All morphisms of sets with right π1(X , x)-action arise from maps of covering spaces
(Proposition 8.36, provided X is connected and locally path connected.

(3) If h1,h2 : Y1 → Y2 are two maps of covering spaces that give rise to the same map of
fibres, then h1 = h2 (Proposition 8.35), provided X is path connected.

REMARK 8.34. The term for the situation above, when X is connected, locally path con-
nected and semilocally simply connected, is that there is an equivalence of categories between
the category of covering spaces of X and the category of sets with a right π1(X , x)-action.

The equivalence yields a table:

PROPOSITION 8.35. Suppose X is a path connected space with basepoint x. Suppose f1 : Y1 →
X and f2 : Y2 → X are two covering spaces and write F1 and F2 for the fibres of each over x. Suppose
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f : Y → X Fx

Map of covering spaces π1(X , x)-equivariant function
Path component Orbit

π1(Y , y) Stabilizer of y ∈ Fx .
TABLE 1. The equivalence of categories between covering spaces and sets with
right π1(X , x)-action.

h1,h2 : Y1 → Y2 are two maps of covering spaces of X such that the two induced functions on fibres
(hi )x : F1 → F2 agree. Then h1 = h2.

PROOF. Let y ∈ Y1 be a point (not necessarily in the fibre), and let γ be a path in X from x to
f1(y). We can lift γ uniquely to a path Γ in Y1 ending at y , and taking the starting point of this
path gives us y0 ∈ Y1, a basepoint for Y in the fibre F1. By hypothesis, h1(y0) = h2(y0), and now
h1 ◦Γ and h2 ◦Γ are two lifts of γ to Y2, both starting at the same point, h1(y0). Uniqueness of
lifts now implies that h1◦Γ= h2◦Γ, so that in particular their endpoints agree, i.e. h1(y) = h2(y).
Since y ∈ Y was an arbitrary point,we have proved the proposition. □

PROPOSITION 8.36. Suppose X is a path connected and locally path connected space with
basepoint x. Suppose f1 : Y1 → X and f2 : Y2 → X are two covering spaces and write F1 and F2 for
the fibres of each over x. Suppose φ : F1 → F2 is a function between the fibres that is compatible
with the right π1(X , x)-actions. Then there is a map h : Y1 → Y2 of covering spaces inducing φ.

PROOF. The bulk of this has been done already. Note that the previous proposition states
that h is unique if it exists.

Choose a point y ∈ F1. We define h on the path component of y in Y1. There is no loss of
generality in supposing Y1 is path-connected, since the π1(X , x)-action restricts to an action on
the intersection of F1 with the path component of y . Similarly, we may replace Y2 by the path
component of φ(y).

In particular, once we assume Y1 and Y2 are path connected, we know that F1 and F2 each
consist of a single orbit for the π1(X , x)-action.

Use y as a basepoint for Y1 and φ(y) as a basepoint for Y2. Then we can define an injective
homomorphism ( f1)∗ :π1(Y1, y) →π1(X , x) and similarly for ( f2)∗.

There is an isomorphism of sets with a right π1(X , x)-action F1
∼=π1(X , x)/(im( f1)∗ and sim-

ilarly there is an isomorphism of sets with a right π1(X , x)-action F2
∼= π1(X , x)/(im( f2)∗). The

existence of a morphism φ of sets with π1(X , x)-action implies that any element of π1(X , x) that
acts trivially on y must also act trivially on φ(y). Therefore, im( f2)∗ ⊂ im( f1)∗. We may then use
Proposition 8.30 to produce a unique map h making the diagram

Y2

f2

��
Y1

h
>>

f1 // X

commute and satisfying h(y) =φ(y).
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It remains to show that h really does yield φwhen restricted to the fibres F1 and F2. To show
this, suppose γ ∈π1(X , x). Since F1 consists of a single orbit, it will suffice to show that h(y ·γ) =
h(y) ·γ. First consider y ·γ. This is the element Γ(1), where Γ is a lift of γ to Y1 starting at y . Then
consider h ·Γ, which is a lift of γ to a path starting at φ(y). Therefore h ·Γ(1) =φ(y) ·γ= h(y) ·γ,
which is what we wanted. □

COROLLARY 8.37. Let X be a path connected and locally path connected space with basepoint
x. Suppose f1 : Y1 → X and f2 : Y2 → X are covering spaces such that the fibres F1 and F2 are
isomorphic as sets with right π1(X , x)-action. Then Y1 and Y2 are isomorphic as covering spaces
of X .

PROOF. There exists an abstract isomorphism φ : F1 → F2 and an inverse φ−1 : F2 → F1.
Using Proposition 8.35, form the maps of covering spaces associated to each of these: φ is asso-
ciated to h and φ−1 is associated to a map h′ that satisfies h ◦h′ = idF2 and h′ ◦h = idF1 by virtue
of Proposition 8.35. This implies that h′ = h−1, so h is an isomorphism of covering spaces, as
required. □

PROPOSITION 8.38. Suppose X is a path connected and locally simply connected space and
let x ∈ X be a basepoint. Let S be a set with a right π1(X , x)-action. There is a covering space
f : Y → X where the fibre f −1(x) is isomorphic to S with the given right π1(X , x)-action.

PROOF. If S is empty, there is nothing to do, so assume S is not empty.
As before, it suffices to consider the case where S consists of a single orbit, since a covering

space f : Y → X is made up of disjoint path components, each corresponding to a different orbit
in the fibre.

Let y ∈ F be a basepoint. Consider K , the stabilizer of the π1(X , x) action on y . Impose an
equivalence relation on paths γ : [0,1] → X such that γ(0) = x; we say γ ∼ γ′ if [γ′] ◦ [γ←] ∈ K .
In particular γ∼ γ′ implies that γ(1) = γ′(1). Let Y denote the set of equivalence classes of such
paths and denote the class of γ by [[γ]].

We generate a topology on Y as follows. Choose a point [[γ]]. Write x ′ = γ(1). Find W ∋ x ′
that is simply connected—any x ′ ∈ X has a local base consisting of such sets. For each z in W ,
there exists a path δ from x ′ to z. The class of [[γδ]] is independent of the choice of δ by virtue of
the local simple-connectivity of X : any alternative choice of δ′ would give us δ′δ← ≃ ex ′ . Define
an open set Wγ ⊂ Y to consist of

{[[γδ]] ∈ Y | δ : [0,1] →W }.

Sets of the form Wγ make up a base for a topology on Y : the verification of this is routine and
tedious so we omit it.

With this topology, by restricting to open sets W that are locally simply connected we see
that f has the property that it is a covering space map (in particular, it is continuous). Finally,
f −1(x) is isomorphic to K \π1(X , x0) ∼= S as a right π1(X , x)-set, as required. □

REMARK 8.39. The hypotheses of Proposition 8.38 are slightly more restrictive than neces-
sary. It is possible to prove it while assuming only that each x ∈ X has a local base of neigh-
bourhoods U such that each loop in U based at x can be contracted to a point via a homotopy
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in X —our assumption is that the homotopy is defined in U . An X satisfying the weaker condi-
tion is called semilocally simply connected. In practice, there are few examples we care about of
spaces that are semilocally simply connected but not locally simply connected.

REMARK 8.40. Suppose X is a path connected and locally simply connected space with
basepoint x. Among all the covering spaces of X , there is one covering space (up to isomor-
phism) f : X̃ → X in particular that is very special: the one that has fibre isomorphic to π1(X , x)
itself as a set with right π1(X , x)-action. This has the properties that:

(1) X̃ is path connected because π1(X , x) consists of exactly one π1(X , x)-orbit
(2) The inclusion f∗ : π1(X̃ , x) → π1(X , x) is the inclusion of the trivial group. This is be-

cause the fibre is isomorphic to im( f∗)\π1(X , x) as a set with right π1(X , x)-action. In
this case, this implies that im( f∗) is trivial.

Recall that a covering space f : X̃ → X with the property that X̃ is simply connected is called
the universal cover of X . We have proved that if X is a path connected and locally simply con-
nected space, then X has a universal cover. What is more, Corollary 8.37 shows that the universal
cover is unique up to isomorphism of covering spaces.

REMARK 8.41. What is universal about the universal cover? One might as well ask what is
universal about the set π1(X , x) as a set with right π1(X , x)-action.

Suppose X is connected and locally path connected. Fix a universal cover f : X̃ → X and
choose a basepoint x̃ ∈ X̃ (set x = f (x̃)). Given any covering space h : Y → X and any point y in
the fibre of h over x, there exists a unique map of covering spaces f̄ : X̃ → Y taking x̃ to y .

Showing this is an exercise in using Proposition 8.36 (to construct f̄ ) and Proposition 8.35
(to show it is unique).

We have restricted our analysis to the case of a single basepoint x ∈ X . One could develop a
whole theory that is independent of the basepoint by using fundamental groupoids. We will not
do that here. Instead, we have the following embellishment of Proposition 6.19.

PROPOSITION 8.42. Let f : Y → X be a map, and let α : [0,1] → Y be a path in Y . Write
y = α(0) and y ′ = α(1). Write x = f (y) and x ′ = f (y ′). Then the following change-of-basepoint
diagram commutes:

π1(Y , y) π1(Y , y ′)

π1(X , x) π1(X , x ′).

φα

f∗ f∗
φ f ◦α

PROOF. As you might expect, this is really a consequence of the functoriality of the funda-
mental groupoid.

The isomorphismφα is given by [γ] 7→ [α←]·[γ]·[α], andφ f ◦α is defined by a similar formula.
The result follows by inspection. □

5. Deck transformations

DEFINITION 8.43. Let f : Y → X be a covering space. An automorphism h : Y → Y of Y over
X is called a deck transformation. The set of all such transformations forms a group, AutX (Y ).
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REMARK 8.44. The deck transformations are functions h : Y → Y , and therefore compose as
functions do: h2◦h1 means “do h1 and then do h2”. In particular, the group AutX (Y ) is acting on
Y on the left. This is notationally different from the right actions we have seen up until now, but
practically very similar.

PROPOSITION 8.45. Let f : Y → X be a covering space where X is connected and locally path
connected and Y is connected. Then the group AutX (Y ) of deck transformations acts freely on Y .

PROOF. If Y is empty, there is nothing to show. Let y ∈ Y and suppose g ∈ AutX (Y ) is a deck
transformation such that g (y) = y . We must show g = idY .

Use y as a basepoint for Y , and x = f (y) as a basepoint for X . Write Fx for the fibre. The
deck transformation g : Y → Y over X corresponds, using Propositions 8.35, 8.36 to a unique
automorphism gx : Fx → Fx as a right π1(X , x)-set. Since g (y) = y , it is the case that gx (y) = y ,
and so gx is the identity on the entire π1(X , x)-orbit of y . Since Y is connected, this orbit is all of
Fx , so gx is the identity, and therefore g = idY . □

If G is a group and K is a subgroup, then we will write K \G for the set of right cosets {K g |
g ∈G}.

REMARK 8.46. If X is connected and locally path connected with basepoint x, then covering
spaces f : Y → X are determined by their fibres Fx as π1(X , x)-sets, and automorphisms of Y
over X are determined by self-maps Fx → Fx that are compatible with the group action. This
is all by virtue of Propositions 8.35, 8.36. Explicitly, there is an isomorphism of automorphism
groups:

AutX (Y ) ∼= Autπ1(X ,x)-Sets(Fx ).

Therefore, understanding the deck transformations of covering spaces over such an X is equiv-
alent to understanding the automorphisms of the right π1(X , x)-sets that arise as fibres. This is
easiest to do when Fx consists of one orbit, i.e., when Y is path-connected and nonempty.

5.1. Automorphisms of one-orbit right G-sets. For a little while, we will work in pure alge-
bra to describe the automorphisms (in the category of right G-sets) of right G-sets consisting of
one orbit.

NOTATION 8.47. If K is a subgroup of G , we will write K \G for the set of right cosets of G by
K , i.e.,

K \G = {K g | g ∈G}.

Suppose G is a group that acts on a nonempty set F on the right in such a way that F consists
of one orbit only.

Let y ∈ F be an element, and write Gy for the stabilizer. The orbit–stabilizer theorem says
that there is a bijection Gy \G → F given by sending the coset Gy g to y g . Although Gy \G may
not be a group, there is a right G-action on it by multiplication. The orbit–stabilizer bijection is
actually a bijection of right G-sets, since

Gy g g ′ 7→ y g g ′ = (y g )g ′.

Therefore, the orbit–stabilizer theorem tells us that every nonempty one-orbit right G-set is iso-
morphic to K \G for some K , the isomorphism being in the category of right G-sets.
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In summary, for our purposes it suffices to determine the groups AutG-Set(K \G).

DEFINITION 8.48. Let K ⊂G be a subgroup of a group. Then NG (K ), the normalizer of K in
G is the subgroup of elements g ∈G such that g K g−1 = K .

In other words NG (K ) is the largest subgroup of G such that K is a normal subgroup of
NG (K ).

PROPOSITION 8.49. The following formula

n ·K g = K ng , when n ∈ NG (K ) and g ∈G

defines a left action of NG (K ) on K \G as a right G-set.

PROOF. First, we must show that n ·K g above does not depend on the specific choice of
g . Suppose K g = K g ′, so that there exists some k ∈ K for which g ′ = kg . Since n ∈ NG (K ), the
element n normalizes K , and we can find some k ′ ∈ K such that nk = k ′n. Now we can write
K ng ′ = K nkg = K k ′ng = K ng , as required.

Second, we can verify that the formula, once it is known to be well defined, gives us a left
action of NG (K ) on K \G as a set. The verification is routine and we omit it.

Third, we check that the action is compatible with the right G-action on K \G . This is not
difficult. The calculation is

[n(K g )] · g ′ = (K ng ) · g ′ = K ng g ′ = n(K g g ′).

This shows that we do indeed have an action as stated. □

PROPOSITION 8.50. The action of NG (K ) on K \G in Proposition 8.49 induces an isomorphism

NG (K )/K
∼=−→ AutG-Set(K \G).

PROOF. The action gives a group homomorphism NG (K ) → AutG-Set(K \G).
We first show that every automorphism of K \G as a right G-set is given by action by some

n ∈ NG (K ). Suppose therefore that α ∈ AutG-Set(K \G). The automorphism α is completely de-
termined by α(K e), since compatibility with the right G-action implies that α(K g ) = α(K e) · g
for general g . Now suppose α(K e) = K g . For any k ∈ K , we must have α(K e) ·k =α(K e), so that
K g k = K g , which implies that g ∈ NG (K ) and therefore α=φ(g ). This shows that φ is surjective.

We now show that the kernel of φ is K ⊂ NG (K ). That is we show that n ∈ NG (K ) acts trivially
on all cosets K g if and only if n ∈ K . This is a direct verification: n ·K g = K ng and K ng = K g for
all g if and only if n ∈ K .

This implies that the surjective homomorphism φ factors through a bijective homomor-
phism NG (K )/K →G . □

REMARK 8.51. The action of NG (K ) on K \G is transitive if and only if K is a normal subgroup
of G .

To see this, argue as follows. The action is transitive if and only if the following is true: for all
g ∈ G , there is some n ∈ NG (K ) such that K n = n(K e) = K g . Therefore g ∈ K ·NG (K ) and since
K ⊂ NG (K ), we see that g ∈ NG (K ).
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COROLLARY 8.52. Let F be a nonempty right G-set consisting of 1 orbit. Let y ∈ F be some
element. Then there is an isomorphism

AutG-Set(F ) ∼= NG (Gy ).

This automorphism group acts transitively on F if and only if Gy is a normal subgroup of G.

PROOF. One may replace F by the right G-set Gy \G , which is isomorphic to it as a right G-
set. The results then follow from the rest of this subsection. □

5.2. Back to covering spaces.

PROPOSITION 8.53. Let X be a connected and locally path connected space. Let x ∈ X be a
basepoint and write G =π1(X , x). Suppose f : Y → X is a covering space such that Y is nonempty
and connected.

The group of deck transformations of Y over X is NG (K )/K where K = f∗(π1(Y , y)) for some
choice of y ∈ Fx .

PROOF. We have done the work for this already. Write Fx for the fibre. The group of automor-
phisms of Y as a covering space of X is isomorphic to AutG-Set(Fx ), by Remark 8.46. In Proposi-
tion 8.26, we showed that this stabilizer is f∗(π1(Y , y)). Then in Corollary 8.52, we showed that
AutG-Set(Fx ) = NK (G). □

The next corollary is philosophically important. As a rule, nonabelian groups arise as groups
of symmetries of something, but π1(X , x) was not defined to be the group of symmetries of
anything. We see that really it is the group of symmetries of the universal cover.

COROLLARY 8.54. Let f : X̃ → X be a universal cover of a connected and locally path con-
nected space. Then AutX (X̃ ) ∼=π1(X , x).

PROOF. Applying the proposition to the case of a universal cover, we discover that AutX (X̃ ) =
Nπ1(X ,x)({e})/{e}. Since everything inπ1(X , x), normalizes the trivial subgroup, the result follows.

□

A more careful development of the theory would allow us to say slightly more. Under the
isomorphism AutX (X̃ ) →π1(X , x) that we have constructed, an automorphismα : X̃ → X̃ corre-
sponds to an element of π1(X , x) in the following way: choose any element y ∈ Fx , then α(y) =
y · g for some g ∈ π1(X , x). One can determine g from the geometry by drawing a path γ from
y to y · g in X̃ (since X̃ is simply connected, this is possible and there is a unique class of such
paths up to homotopy rel. {0,1}). Then map γ down to X to get a loop based at X . This is the
element of π1(X , x) corresponding to α.

EXAMPLE 8.55. Let p = (1,0) ∈ S1. Let us calculate π1(S1, p) for the third time. The first two
calculations were in Example 7.4 and Example 8.29.

There is a covering space map f : R → S1 given by f (x) = (cos(2πx),sin(2πx)), and since R is
contractible, this is a universal covering space. The group AutS1 (R) is the group of homeomor-
phisms α : R → R that satisfy f ◦α=α, i.e., the set of homeomorphisms such that

∀x ∈ R, x −α(x) ∈ Z ⊂ R.
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Since x −α(x) is continuous, R is connected and Z is discrete, it follows that x −α(x) ∈ Z is a
constant independent of x. Therefore, there exists some integer m for which the function α is

α(x) = x +m.

It is easy to verify that such αs really do give deck transformations. Function composition coin-
cides with addition of constants.

Therefore, we have established an isomorphism π1(X , x) ∼= Z. The generators are classes of
the loops in S1 that correspond to paths from an integer m to m ±1.

REMARK 8.56. If we allow the covering space Y to be disconnected, the group of deck trans-
formations can become larger thanπ1(X , x0). For instance, the split covering ∗∐∗→∗ has non-
trivial deck transformation group.

DEFINITION 8.57. Let f : Y → X be a covering space where X is connected and locally path
connected, and Y is connected. We say f : Y → X is a normal covering space if the group of deck
transformations AutX (Y ) acts transitively on Fx for all choices of x ∈ X .

PROPOSITION 8.58. Assume f : Y → X is a covering space where X is connected and locally
path connected and Y is connected. Let y ∈ Y be a point and x = f (y). The following are equiva-
lent:

(1) AutX (Y ) acts transitively on Fx .
(2) f∗ :π1(Y , y) →π1(X , x) is the inclusion of a normal subgroup.
(3) For all choices of point y ′ ∈ Y , the map f∗ : π1(Y , y ′) → π1(X , f (y ′)) is the inclusion of a

normal subgroup.
(4) The covering f is normal.

PROOF. Let us start by showing the equivalence of 1 and 2.
We use the equivalence between covering spaces f : Y → X and sets with right π1(X , x)-

action. For brevity, write G = π1(X , x) and K = im f∗. Under this equivalence, to say AutX (Y )
acts transitively on Fx is to say that NG (K )/K acts transitively on K \G , which it does if and only
if K is normal in G as we remarked earlier. This shows that 1 and 2 are equivalent.

Now we can use the change-of-basepoint result, Proposition 8.42, to say that if f∗ :π1(Y , y) →
π1(X , x) is the inclusion of a normal subgroup, then so too is the homomorphism f∗ :π1(Y , y ′) →
π1(X , x ′) where y ′ is any other point in Y . Therefore 2 implies 3. Applying the equivalence of 2
and 1 to an arbitrary pair of basepoints y ′, x ′ shows that 3 implies 4, and certainly 4 implies
1. □

EXAMPLE 8.59. Not all covering spaces are normal covering spaces. An example is given in
Figure 1. In the figure, a (topological) graph is depicted. The edges labelled α map to the edge
labelled α and similarly for β. The vertices map to the unique vertex in the target. The target X
is not the quotient of Y by a group action.

6. Fundamental groups of quotients

Remember that a (left) action of a group G on a space Y is free if, for all g ∈G \{e} and y ∈ Y ,
we have g y ̸= y . Here is a strengthening of this condition.
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FIGURE 1. A covering space that is not a normal covering.

DEFINITION 8.60. A left action of a (discrete) group G on a space Y is a covering space action
if, for all y ∈ Y there exists an open set U ∋ y such that U ∩ gU ̸= ; implies g = e.

This is sometimes called a “properly discontinuous action”, which may be misleading. The
term “discontinuous” here means that the action by two different elements g ,h ∈ G are not
“close”, but the maps Y → Y given by left-multiplication by g ∈G are certainly continuous.

PROPOSITION 8.61. Let G be a finite group acting freely on the left on a Hausdorff space Y .
Then the action is a covering space action.

PROOF. Let y ∈ Y and g ∈G \{e}. We want to find an open set U such that U ∋ y and U∩gU =
;.

Since Y is Hausdorff, we can find disjoint open sets Wg ∋ y and Vg ∋ g y . Define Ug =
Wg ∩ g−1Vg , and form U = ⋂

g∈G\{e} Ug , which is an open neighbourhood of y . We claim U is
the desired neighbourhood. Suppose for the sake of contradiction that z ∈U ∩ gU for some g .
It is the case that z ∈Ug , so that z ∈Wg and z ∈ g−1Vg , which implies z ∈Wg ∩Vg =;, a contra-
diction. □

PROPOSITION 8.62. If Y is a topological space and G is a group acting on Y by means of a
covering space action, then the quotient map q : Y → Y /G is a covering space map.

PROOF. For all x ∈ Y /G , we can choose a preimage y ∈ q−1(Y ) and an open neighbourhood
U ∋ y meeting the condition that U ∩ gU = ; unless g = e. Then q(U ) = W is an open neigh-
bourhood of x and q−1(W ) ≈∐

g∈G gU . Furthermore, for all g ∈G , the map q|Ug : gU →W is an
open bijection, i.e., a homeomorphism, as required. □

REMARK 8.63. If a finite group G acts freely on a Hausdorff space Y , then the quotient
is Hausdorff. Here is a short argument: Let q : Y → X be the quotient map, and let x, z be
distinct points in X . Let x̃ ∈ q−1(x) and z̃ ∈ q−1(z) be points in the inverse images. For each
pair of elements g ,h ∈ G , we can find disjoint open sets Ũg ,h ∋ g x̃ and Ṽg ,h ∋ hz̃. Now let
Ũ = ⋂

g ,h∈G g−1Ũg ,h and Ṽ = ⋂
g ,h∈G h−1Ṽg ,h . The sets Ũ , Ṽ are open neighbourhoods of x̃, z̃.
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Let U = q(Ũ ) and V = q(Ṽ ). Since q is a covering space map, it is open and U , V are open neigh-
bourhoods of x, z. Furthermore q−1(U ) =⋃

g∈G gŨ and q−1(V ) =⋃
h∈G hṼ . It is routine to verify

that these are disjoint, so that U , V are disjoint as well.

EXAMPLE 8.64. Let C2 denote the group {±1}. This groups acts on the spheres Sn for all n by
multiplication of coordinates. This is a free action of a finite group on a Hausdorff space, and so
the quotient map is a covering map q : Sn → RPn and RPn is Hausdorff.

EXAMPLE 8.65. Here is a variation on the previous example. Let r be a natural number and
let Cr denote the group {1,ζ, . . . ,ζr−1} where ζ is a primitive r -th root of unity. Then Cr acts on
Cn \0 by multiplication, and the action restricts to an action on the submanifold S2n−1 consisting
of n-tuples (z1, . . . , zn) such that |z1|2 +·· ·+ |zn |2 = 1.

EXAMPLE 8.66. There are covering space actions by infinite groups, of course. For instance, Z
acts on R by translation (m, x) 7→ m+x. The quotient map is q : R → S1 (up to homeomorphism).

EXAMPLE 8.67. More strikingly, Z acts on R2 \ 0 by m · (x, y) = (2m x,2−m y). This is a covering
space map, but the quotient space X is not Hausdorff.

The space X , like R2 \ 0, is locally homeomorphic to R2 since the quotient map is a local
homeomorphism, but since X is not Hausdorff, it is not a manifold.

The space Y might not be connected, and elements of the group G can permute the com-
ponents of Y . If we restrict our attention, however, to the case of connected (and locally path
connected) Y , however, we see that the theory of covering space actions is really just the theory
of deck transformations of normal covering spaces.

PROPOSITION 8.68. Suppose Y is a nonempty connected, locally path connected space, and
G acts on Y by a covering space action. Write q : Y → X for the quotient map. Then q : Y → X is a
normal covering space. The group of deck transformations, AutX (Y ), is precisely G.

PROOF. We have already seen that q is a covering space. Since Y has these properties, X is
connected and locally path connected.

The action of G on Y is certainly by automorphisms of Y over X = Y /G , essentially by con-
struction. That is, G is a subgroup of the group AutX (Y ) of deck transformations.

To show q : Y → X is a normal covering space, it suffices by Proposition 8.58 to show that the
deck transformations act transitively on one fibre. Let x ∈ X and write Fx = q−1(x) and choose
y ∈ Y . By construction of the quotient, Fx = {g y}g∈G , and clearly G acts transitively on this fibre,
and therefore so does AutX (Y ) which is a group containing G .

Now to show that AutX (Y ) is not bigger than G , suppose we have some deck transformation
h : Y → Y . Let h(y) = g (y) for some g ∈ G–here we write g (y) for g y—, then consider g−1h(y),
which is a deck transformation sending y to y . Since the deck transformations act freely on Y
by Proposition 8.45, it must be the case that g−1h = idY , so that h ∈G . □

REMARK 8.69. We are somewhat hamstrung in Proposition 8.68 by our decision to constrain
normal covering spaces to the case where Y is connected. One could say a covering space f :
Y → X is normal if and only if the deck transformations act transitively on all the fibres (whether
or not Y is connected). Normal transformations in this sense will not correspond to normal
subgroups of π1(X , x), but Proposition 8.68 still applies to them.
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THEOREM 8.70. Let G be a group acting on a connected and locally path connected space Y
by means of a left covering space action and let q : Y → X be the quotient map. Let y ∈ Y and let
x = q(y). Then there is a short exact sequence of groups

{e} →π1(Y , y)
q∗→π1(X , x) →G → {e}.

In other words, q∗ is injective, the image of q∗ is a normal subgroup, and G ∼=π1(X , x)/ im q∗.

PROOF. Everything here has been proved already: q∗ is injective because q is a covering
space map. The image of q∗ is normal in π1(X , x) because q : Y → X is a normal covering space.
The quotient π1(X , x)/ im q∗ is the group of deck transformations, which is also G . □

EXAMPLE 8.71. One very useful case of the theorem is when Y is simply connected. Then
π1(X , x) ∼=G , and Y is the universal cover of X .

For instance, we see immediately that if n > 1, then q : Sn → RPn is a universal covering
space map and π1(RPn , x) ∼= Z/(2).

EXAMPLE 8.72. More exotic calculations are quite possible. For instance, let α : R2 → R2 be
the translationα(x, y) = (x, y+1), and letβ : R2 → R2 be the transformationβ(x, y) = (x+1,1−y).
The group G generated by these two transformations acts on R2 by means of a covering space
action. We can determine the structure of G precisely

G = 〈α,β|αβα=β〉.
The quotient R2/G is the Klein bottle, K . Therefore π1(K , x) ∼= G (for any choice of basepoint
x ∈ K ).

We’ve seen that quotient constructions give us normal covering spaces. The next proposi-
tion says that conversely, every normal covering space is a quotient by a covering space action
by the deck transformations.

PROPOSITION 8.73. Let X be a space that is connected and locally path connected. Let f : Y →
X be a normal covering space, so that in particular, Y is connected and nonempty. Write G for the
group of deck transformations AutX (Y ). Then the action of G on Y is a covering space action and
f : Y → X is a quotient for this action.

PROOF. Let y ∈ Y be a point, and write x = f (y). Since f is a covering space map, there exists
an open set U ∋ x trivializing f . We may suppose, for convenience, that U is path connected.
Write Fx for the fibre f −1(x) and for each y ′ ∈ Fx , let Vy ′ denote the path component of f −1(U )
containing y ′. The open sets {Vy ′}y ′∈Fx are disjoint. Each Vy ′ is mapped homeomorphically to U
by f .

Then the group G of deck transformations acts on f −1(U ), and consequently it must act by
permuting the Vy ′s. Since the covering space is normal, the action of G on Fx is free and transi-
tive (Propositions 8.58, 8.45) and therefore the action on the set {Vy ′}y ′∈Fx s is free and transitive.
Therefore, for all g ∈G , if gVy ∩Vy ̸= ;, we see g = e. In summary, the action is a covering space
action.

Finally, let us verify that indeed f : Y → X is a quotient map. There is no real surprise here.
Certainly the points in X correspond to G-orbits of points in Y , so the underlying set is correct.
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The map f is continuous. It suffices to prove that U ⊂ X is open whenever f −1(U ) is open in Y ,
but f is a covering space map and f ( f −1(U )) =U , so the argument is complete. □

REMARK 8.74. This argument shows that the action by deck transformations is a covering
space action whether or not the covering space is normal. In the non-normal case, however, the
quotient is not X .

6.1. Quotients by subgroups. Suppose G acts on Y by a covering space action, and H is a
subgroup of G . Then H acts on Y , also by a covering space action, and we may form the quo-
tient space Y /H . One may wonder whether Y /H is a covering space of Y /X . At least in good
circumstances, this turns out to be the case.

PROPOSITION 8.75. Suppose

Y Z

X

g

f ◦g

f

is a commutative diagram of spaces in which g and f ◦g are covering space maps and where g is
surjective, and in which X is locally path connected. Then f is a covering space map.

PROOF. Suppose x ∈ X . Let U be a path connected open neighbourhood of x over which
f ◦ g trivializes. We wish to show that f −1(U ) is also a disjoint union of spaces mapping to U by
homeomorphisms.

Write ( f ◦ g )−1(U ) =∐
j∈J V j , where f ◦ g |V j V j →U is a homeomorphism.

For each j ∈ J , the map g |V j is open, being a restriction of g to the open set VJ , continuous
and injective, since f ◦ g |V j is injective. Therefore g |V j is a homeomorphism V j → g (V j ).

It is elementary to check that f −1(U ) =⋃
j∈J g (V j ). It will be enough to show that

⋃
j∈J g (V j )

is a disjoint union of some of the g (V j )s, since each g (V j ) is homeomorphic to V j ≈ U , and
f |g (V j ) : V j →U is a homeomorphism by a diagram chase.

Therefore it suffices to show that for all j , j ′ ∈ J , either g (V j ) = g (V ′
j ) or g (V j )∩ g (V j ′) = ;.

Let j , j ′ be a pair of indices and suppose z0 ∈ g (V j )∩ g (V j ′). Let z ∈ g (V j ) be a point. We wish to
show that z ∈ g (V j ′).

There is a path γ in g (V j ) from z0 to z. Let x0 = f (z0) and x = f (z). Using the homeomor-
phisms over U , we may map γ to a path γ′ in g (V j ′), which also begins at z0 and ends at some
point, z ′. We have two paths, γ and γ′, each of which starts at z0, and each of which lies over the
same path f (γ) in U .

Choose some y0 in Y lying over z0, and lift γ,γ′ to paths γ̃, γ̃′ starting at y0. By applying
uniqueness of path-lifting to f ◦g and f (γ) = f (γ′), we see that γ̃= γ̃′, so γ= γ′ and in particular,
z = z ′. □

PROPOSITION 8.76. Let G act on a connected, locally path connected space Y by a covering
space action. Write X = Y /G. Choose a basepoint x ∈ X , and let H be a subgroup of G. Then
Y /H → Y /G is a covering space whose fibre is isomorphic to H\G as a set with right π1(X , x)-
action.
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6.2. Proper actions. Here is a small note about when a quotient of a Hausdorff space is
Hausdorff.

DEFINITION 8.77. Let Y be a locally compact Hausdorff space and suppose α : Y ×G → Y is
a right G action. We say that the action of G on Y is proper if the following holds: for all compact
subsets K of Y , the set of g ∈G such that K ∩K g ̸= ; is finite.

REMARK 8.78. A map f : A → B of locally compact Hausdorff spaces is said to be proper if
f −1(K ) is compact whenever K is a compact subset of B . Associated to the action map of spaces
above, there is a map Φ : Y ×G → Y ×Y given by Φ(y, g ) = (y, y g ). It is an exercise to verify that
the action is proper in the sense above if and only if Φ is proper in the sense defined here.

REMARK 8.79. An action by a finite group is always proper.

PROPOSITION 8.80. Suppose α : Y ×G → Y is a free proper action by a group G on a locally
compact Hausdorff space Y . Then α is a covering space action and the quotient space X = Y /G is
locally compact and Hausdorff.

Write q : Y → X for the quotient map.

PROOF. First we show the action is a covering space action. Let y ∈ Y be a point and choose
an open U ∋ y with compact closure. By virtue of the proper hypothesis on the action, there
are only finitely many g ∈ G such that U and gU intersect. Denote the set of such g by A. For
each g ∈ A, it is possible to find disjoint open neighbourhoods Wg ∋ y , Vg ∋ y g . Then form
Ug =U ∩Wg ∩Vg g−1, which is open. Note that Ug ∩Ug g =;.

Form U ′ =∩g∈AUg . We leave it as an exercise to establish that U ′∩U ′g =; for all g ∈G .

Being locally compact is a local condition on a space: i.e., X is locally compact if and only if
every point has a locally compact neighbourhood. Therefore, if q : Y → X is a surjective covering
space, then Y is locally compact if and only if X is locally compact.

It remains to show that the quotient is Hausdorff. Suppose x1 and x2 are two distinct points
in X and let y1 and y2 be points in Y such that q(yi ) = xi . We can choose an open U1 containing
y1 and U2 containing y2 so that each has compact closure. In particular, only finitely many of the
translates gU2 meet U1. As before, we can replace U1 and U2 by smaller open neighbourhoods
of y1 and y2, now having the property that U1 and gU2 are disjoint for all g in G . We observe that
this implies that gU1∩g ′U2 =; for all g , g ′ ∈G , since x ∈ gU1∩g ′U2 implies xg−1 ∈U1∩g ′g−1U2.

Let V1 = ⋃
g∈G gU1 and V2 = ⋃

g∈G gU2. These are two open sets, and they are saturated in
that q−1q(V1) =V1 and similarly for V2. In particular, q(V1) is an open neighbourhood of x1 and
q(V2) is an open neighbourhood of x2 and their intersection is empty, as required. □





CHAPTER 9

Quotients and group actions

1. More about quotients

Recall that a function q : X → Y between topological spaces is a quotient map if q is surjec-
tive and Y has the finest topology such that q is continuous. Equivalently, the topology on Y is
is such that V ⊂ Y is open if and only if q−1(V ) is open.

PROPOSITION 9.1. Suppose q1 : X → Y and q2 : Y → Z are quotient maps, then q2 ◦ q1 is a
quotient map.

DEFINITION 9.2. Let q : X → Y be a function. Say that a subset U ⊂ X is saturated for f if
U = f −1( f (U )).

REMARK 9.3. It is elementary to verify that if V ⊂ Y is a subset, then q−1(V ) is saturated.
This is because qq−1(V ) =V for any subset V of Y .

Given any subset U ⊂ X , we can saturate U by taking q−1q(U ). If U is not saturated, then
q−1q(U ) is strictly larger than U .

PROPOSITION 9.4. Let q : X → Y be a surjective (continuous) map. Then the following are
equivalent:

(1) q : X → Y is a quotient map;
(2) For all saturated open sets U ⊂ X , the image q(U ) is open.

PROOF. In one direction, suppose q is a quotient map. Suppose U ⊂ X is saturated and
open. Then q−1q(U ) =U is open in X , so q(U ) is open in Y .

In the other direction, we assume the images of saturated opens are open and wish to prove
q is a quotient map. Let V ⊂ Y be a subset such that q−1(V ) is open. The set q−1(V ) is saturated.
By hypothesis, qq−1(V ) is open, but qq−1(V ) = V . We have proved that V is open if q−1(V ) is
open. This proves that the map q is a quotient map. □

What follows is a surprisingly difficult theorem. It is due to J. H. C. Whitehead, from 1948.1

THEOREM 9.5. Suppose q : X → Y be a quotient map and Z is a locally compact Hausdorff
space. Then q × idZ : X ×Z → Y ×Z is a quotient map.

The hypothesis of local compactness cannot be dropped.

1The version he proved is slightly stronger
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PROOF. The map q × idZ is continuous and surjective. It remains to show that (q × idZ )(W )
is open whenever W is a saturated open set.

Let W be a saturated open subset of X ×Z and let (y0, z0) ∈ (q × idZ )(W ). We will prove that
(q×idZ )(W ) is open in Y ×Z by constructing an open neighbourhood around (y0, z0) contained
in (q × idZ )(W ).

Choose an arbitrary x0 ∈ q−1(y0). Then we can find a neighbourhood of (x0, z0) of the form
A×B , where A ⊂ X is open and B ⊂ Z is open. Because Z is locally compact and Hausdorff, we
can further restrict to an open neighbourhood V of z0 such that V̄ ⊂ B and V̄ is compact. We
concentrate on V̄ .

Let U denote the set

U = {x ∈ X | {x}× V̄ ⊂W }.

First, we observe that x0 ∈U : in fact A× V̄ ⊂ A×B ⊂W .
Second, we claim that U is saturated for the map q : X → Y . Suppose x ∈U and x ′ ∈ X satisfy

q(x) = q(x ′). For all z ∈ V̄ , it is the case that (x, z) ∈ W . Since W itself is saturated, it is also the
case that (x ′, z) ∈W . Therefore x ′ ∈U , establishing the claim.

Third, we show U is open. Suppose x ∈ U . Then {x}× V̄ is a compact subset of X × Z and
W is an open neighbourhood of this compact subset. By the generalized Tube Lemma, we can
find some open sets D ⊂ X and E ⊂ Z such that {x}× V̄ ⊂ D ×E ⊂W . Choose any x ′ ∈ D and any
z ∈ V̄ , then (x ′, z) ⊂ W . This shows that x ′ ∈ U , so that D is an open neighbourhood of x in U .
This shows that U is an open set.

We have therefore found two open sets U ⊂ X and V ⊂ Z such that

• (x0, z0) ∈U ×V ;
• U is saturated for q ;
• U ×V ⊂W .

Apply (q × idZ )(U ×V ) to get q(U )×Z , which is an open subset of Y ×Z containing (y0, z0) and
contained in (q × idZ )(W ). Since (y0, z0) was arbitrary, this shows that (q × idZ )(W ) is open, as
required. □

2. Topological Groups

DEFINITION 9.6. A topological group is a space G equipped with a continuous multiplication
map m : G×G →G , an identity element e ∈G , and a continuous inversion i : G →G , all satisfying
the usual axioms for a group:

(1) The operation m is associative: for all a,b,c ∈G , the equation m(a,m(b,c)) = m(m(a,b),c)
holds.

(2) The element e is an identity: for all a ∈G , the equations m(a,e) = a = m(e, a) hold.
(3) The map i is an inversion: for all a ∈G , the equations m(a, i (a)) = e = m(i (a), a) hold.

EXAMPLE 9.7. Any group (not topological) can be given the discrete topology. This makes it
a discrete group. This is the usual topology to put on a finite group.

EXAMPLE 9.8. The groups GLn(R) and GLn(C) are subsets of Rn2
and Cn2

respectively. If we
give GLn(R) and GLn(C) the subspace topology, then they become topological groups.
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REMARK 9.9. If G is a topological group and H is a subgroup of G , then H inherits a topo-
logical group structure. The most common instances of this are when H is an open subgroup of
G and, especially, when H is a closed subgroup of G .

EXAMPLE 9.10. There are many closed subgroups of GLn(R) and GLn(C). They are all topo-
logical groups with the induced topology. Write AT for the transpose of a matrix and A∗ for the
hermitian conjugate (i.e., the complex conjugate of the transpose of A). Each of the following
determines a subgroup of GLn(R) or GLn(C) as appropriate:

(1) On = {A ∈ GLn(R) | A AT = In};
(2) SOn = {A ∈ GLn(R) | A AT = In , det(A) = 1};
(3) Un = {A ∈ GLn(C) | A A∗ = In};
(4) SUn = {A ∈ GLn(C) | A A∗ = In , det(A) = 1}.

They include On (the orthogonal groups), SOn (the special orthogonal groups), Un (unitary)
and SUn (special unitary

EXAMPLE 9.11. The examples above include S1 in two different ways: S1 may be identified
with SO2 (rotations of R2) and also with U1 (complex numbers of unit length).

3. Group actions

DEFINITION 9.12. Given a topological group G and a space X , a left G-action on X is a map
α : G ×X → X such that:

(1) α(e, x) = x for all x ∈ X .
(2) α(h,α(g , x)) =α(hg , x) for all g ,h ∈G and x ∈ X .

NOTATION 9.13. As well as α(g , x), different notations are used for group actions. For in-
stance, g · x is common notation for α(g , x), or even just g x.

REMARK 9.14. A right G-action can be defined similarly. The key difference is in the compo-
sition rule. For a right action, α(h,α(g , x)) =α(g h, x). It is common to write right actions as x ·g
or xg . Then you have the formulas (x · g ) ·h = x · (g h) or (xg )h = xg h .

REMARK 9.15. A left G-action on X can be converted into a right-G-action by letting x · g =
g−1 ·x. This means that theorems and definitions for left G-actions always have counterparts for
right G-actions. As a matter of practice, it is best to be clear and unambiguous about whether
one is using a left- or a right-G action.

REMARK 9.16. All ordinary groups may be viewed as topological groups, by giving them the
discrete topology. This means that everything we say here applies to ordinary (discrete) groups
acting on topological spaces.

DEFINITION 9.17. If α : G ×X → X is a left G-action and x ∈ X , then the stabilizer of x ∈ X is
the subgroup Gx = {g ∈G | g · x = x}. The orbit of x is {y ∈ X | ∃g ∈G , g x = y}.

A group action is called:

• faithful if the intersection of the stabilizers is trivial (in which case, every g ∈G \{e} acts
nontrivially on some element of X ). For instance, GLn(R) acts faithfully on Rn .
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• free if the stabilizer of each x ∈ X is trivial (in which case, every g ∈ G \ {e} acts non-
trivially on every element of X ). For instance, a subgroup H acts freely on G by left-
multiplication.

• transitive if, for every pair (x, y) of elements in X , there is some g ∈G such that g x = y .
In this case, X consists of a single G-orbit.

The orbit–stabilizer theorem says that the continuous map G/Gx → orbit(x) given by send-
ing gGx to g x is a bijection.

4. Quotients by group actions

CONSTRUCTION 9.18. Suppose G × X → X is a left G-action. The notation X /G denotes the
set of equivalence classes of elements of X under the relation x ∼ g ·x. There is a surjective map
q : X → X /G . Give X /G the quotient topology. We will call the resulting map q : X → X /G the
quotient map and X /G the quotient space.

Of course, a similar construction applies to right G-actions. In fact, the notation X /G for
quotients by left G-actions is unsatisfactory. It ought to be G\X .

PROPOSITION 9.19. Suppose G is topological group acting on a space X . Then the quotient
map q : X → X /G is open.

PROOF. Let U be an open subset of X . Then q−1q(U ) =⋃
g∈G g ·U . Since x 7→ g ·x is a home-

omorphism of X with itself, the sets g ·U are all open, hence q−1q(U ) is open. This implies that
q(U ) is open. □

REMARK 9.20. This contrasts with the case of general quotients in topology, which are not
always open. For instance, the quotient map q : [0,1] → S1 given by collapsing {0,1} is not an
open map, as you can see by considering the image of [0,1/2).

EXAMPLE 9.21. Even if G acts freely on a Hausdorff space X , the quotient space X /G may
not be Hausdorff. For example, consider the case of Z (with the discrete topology) acting on
R2 \ {(0,0)} by n · (x, y) = (2n x,2−n y).

EXAMPLE 9.22. A similar example to the above is that of R× acting on R2 \{(0,0)} byλ·(x, y) =
(λx,λ−1 y).

DEFINITION 9.23. A map f : X → Y of topological spaces is proper if, for all compact sets
K ⊂ Y , the subset f −1(K ) is compact in X .
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The compact–open topology

1. Definition

The fundamental problem in this section is how to put a topology on the set of all continu-
ous functions f : X → Y . In good circumstances, which is to say when X is locally compact and
Hausdorff, there is a standard default choice, which is the subject of this chapter.

The subject of functional analysis is the study of topologies and metrics on spaces of func-
tions, and we know that functional analysis is not a small topic, so this chapter is not the last
word on spaces of functions, by any means.

NOTATION A.1. Let X and Y be topological spaces. Let K ⊂ X be compact and U ⊂ Y be
open. Write o(K ,U ) for the set of continuous functions f : X → Y such that f (K ) ⊂U .

DEFINITION A.2. Let X and Y be topological spaces. Let C (X ,Y ) denote the set of contin-
uous functions from X to Y , endowed with the topology generated by open sets of the form
o(K ,U ) as above. This topology is called the compact-open topology.

EXAMPLE A.3. Suppose K ⊂ X is a singleton {x}. This set is guaranteed to be compact. Let U
be any open set in Y . Then the set o({x},U ) is the set of continuous f such that f (x) ∈U .

This has the following consequence for the compact-open topology: if ( fn) → f is a conver-
gent sequence in C (X ,Y ), and if f (x) ∈U , then each open set o({x},U ) has to contain a tail of
( fn). This is equivalent to saying that some tail fn(x), fn+1(x), . . . is contained in U , or in other
other words, that ( fn(x)) → f (x).

EXAMPLE A.4. Suppose Y is a metric space, and X is Hausdorff. In this case the compact-
open topology is also called the topology of uniform convergence on compact subsets for the
following reason.

A sequence of function ( fn) in C (X ,Y ) converges to f in the compact-open topology if and
only if, for all compact K ⊂ X and all ϵ> 0, there exists some N ∈ N such that d( fn(k), f (k)) < ϵ

for all k ∈ K .
The “only if” direction is mostly left as an exercise. Start by proving that if K is a compact

Hausdorff space that the compact-open topology on C (K ,Y ) is induced by the uniform metric:
d( f , g ) = maxk∈K d( f (k), g (k)). Below we will also show that the map determined by restriction
of functions C (X ,Y ) →C (K ,Y ) is continuous. This suffices to complete the “only if” direction.

Let’s do the “if” direction. Suppose ( fn) → f uniformly on all compact sets. Consider a gen-
eral open neighbourhood of f . This contains an open neighbourhood of the form

W =
n⋂

i=1
o(Ki ,Ui ) ∋ f

93
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because opens like this form a basis.Still to do

PROPOSITION A.5. The construction of C (X ,Y ) is contravariantly functorial in X and co-
variantly functorial in Y . In less technical language, if g : X ′ → X and h : Y → Y ′ are continuous
function, then precomposition with g and postcomposition with h yields a function

Φg ,h : C (X ,Y ) →C (X ′,Y ′) f 7→ h ◦ f ◦ g

and this function is continuous.

PROOF. It is sufficient to show that Φ−1
g ,h(o(K ,U )) is open when K is compact in X ′ and U is

open in Y ′. This is o(g (K ′),h−1(U )), which is open. □

PROPOSITION A.6. Let Y be a topological space, then the map Y → C (∗,Y ) sending y to the
constant function with value y is a homeomorphism.

2. Currying and Uncurrying

Suppose we have a continuous function f : X×Y → Z . We can curry this function to produce
a function α f : X →C (Y , Z ) defined by

α f (x)(y) = f (x, y).

The function α f (x) : Y → Z is the composite

Y
ix // X ×Y

f // Z

and since both functions here are continuous, so is α f (x).

PROPOSITION A.7. The function α f : X →C (Y , Z ) is continuous.

PROOF. It suffices to prove that α−1
f (o(K ,U )) ⊂ X is open, where K ⊂ Y is compact and U ⊂

Z is open.
Explicitly: α−1

f (o(K ,U )) is the set of all x ∈ X such that for all y ∈ K , the value f (x, y) ∈U .

Fix K ,U and suppose x ∈α−1
f (o(K ,U )). This implies that f ({x}×K ) ⊂U in Z , or equivalently

{x}×K ⊂ f −1(U ). Then by the generalized tube lemma, there are some open V ∋ x and W ⊇ K
such that f (V ×W ) ⊂ U . In particular, f (V ×K ) ⊂ U , which implies that x ∈ V ⊂ α−1

f (o(K ,U )).

Since x was arbitrary, α−1
f (o(K ,U )) is open. □

We can also uncurry functions. Suppose f : X →C (Y , Z ) is a continuous function, then we
can define β f : X ×Y → Z by the formula β f (x, y) = f (x)(y).

PROPOSITION A.8. With the definition as above, if Y is locally compact and Hausdorff, then
β f is continuous.

PROOF. Let U be an open set in Z . We want to show that β−1
f (U ) is open. To do this, we take

(x, y) ∈β−1
f (U ) and show that it has some neighbourhood W ×V contained in β−1

f (U ).

The element f (x) ∈ C (Y , Z ) is a continuous function, so that f (x)−1(U ) is an open set of
Y containing y . Since Y is locally compact and Hausdorff, there is some open V satisfying y ∈
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V ⊂ V̄ ⊂ f (x)−1(U ) such that V̄ is compact. Now consider the open set o(V̄ ,U ) in C (Y , Z ). It
contains f . Furthermore, the set W = f −1(o(V̄ ,U )) is open, because f is continuous, and it
contains x because f (x)(V̄ ) ⊂ f (x)( f (x)−1(U )) =U . Now if we apply β f (W ×V ), we get f (x ′)(y ′)
where x ′ ∈W and v ′ ∈V . Note that f (x ′) ∈ o(V̄ ,U ), so that f (x ′)(y ′) ∈U , as required. □

COROLLARY A.9. Let X , Z be topological spaces and Y a locally compact Hausdorff space. The
two constructions of currying and uncurrying yield a natural bijective correspondence

C (X ×Y , Z ) ↔C (X ,C (Y , Z ))

REMARK A.10. If X and Y are both locally compact Hausdorff, then this is actually a home-
omorphism.

COROLLARY A.11. Let X be a locally compact Hausdorff space. Then the evaluation function

ev : C (X ,Y )×X → Y

given by ev( f , x) = f (x) is continuous.

PROOF. Apply the previous corollary to the bijection

C (C (X ,Y )×X ,Y ) ↔C (C (X ,Y ),C (X ,Y )).

Take the identity function on the right. This corresponds to the evaluation function on the left.
□

COROLLARY A.12. Let X and Z be topological spaces and let Y be a locally compact Hausdorff
space. Then the composition function

C (Y , Z )×C (X ,Y )
◦−→C (X , Z )

is continuous.

PROOF. It is equivalent to show the adjoint

C (Y , Z )×C (X ,Y )×X → Z ,

the map that sends (g , f , x) to g ◦ f (x), is continuous.
We can factor this as two evaluation maps

C (Y , Z )×C (X ,Y )×X
id×ev−→ C (Y , Z )×Y

and
C (Y , Z )×Y

ev→ Z .

Both of these are continuous. □

3. The pointed case





APPENDIX B

Category Theory

1. Objects and morphisms

We generally disregard problems of size, viz. whether or not something is a set.

DEFINITION B.1. A category C consists of a collection of objects, obC and a collection of
morphisms MorC, such that

(1) Every morphism has a source in obC and a target in obC. A morphism f is often written

f : X → Y or X
f→ Y , where X is the source and Y is the target.

(2) For any two objects X and Y , there is a set MorC(X ,Y ) or C(X ,Y ), consisting of pre-
cisely those morphisms of C having source X and target Y .

(3) For any three objects X ,Y , Z of C, there is a composition of morphisms

◦ : C(X ,Y )×C(Y , Z ) → C(X , Z )

and this composition is associative in that f ◦ (g ◦h) = ( f ◦ g )◦h whenever these com-
posites are defined.

(4) For each object X of C, there exists an identity morphism idX ∈ C(X , X ) such that f ◦
idX = f and idX ◦ g = g whenever these composites are defined.

REMARK B.2. An easy and standard argument proves that idX is the unique morphism X →
X with the stated property.

NOTATION B.3. There are categories Set,Gr,Ab, of sets, groups, abelian groups, and many
other similar categories of objects commonly studied in mathematics. These are generally large
categories, in that the collection of objects does not form a set.

EXAMPLE B.4. There are also small categories, where the collection of objects forms a set,
and therefore the collection of morphisms also forms a set (under our hypotheses). For instance,
given any partially ordered set S, one can construct a category, also called S, where one regards
‘element of’ and ‘object of’ as synonymous, and then declares that S(a,b) =; if b < a and that
S(a,b) consists of one morphism if a ≤ b.

It is often possible to depict such small categories diagrammatically. It is customary to draw
only a subset of all morphisms, and to leave out morphisms that can be inferred from the mor-
phisms and objects drawn. In particular, identity morphisms are seldom drawn.

(1) The standard span:

• •oo // •
97
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(2) The standard cospan:
• // • •oo

(3) The categoryN (with the usual order)

0 // 1 // 2 // 3 // · · ·
EXAMPLE B.5. There is a category Top of topological spaces where the objects are topologi-

cal spaces and morphisms are continuous functions. There is also a category of pointed spaces,
Top•, where the objects are pairs (X , x0) where X is a topological space and x0 ∈ X . The mor-
phisms are the based maps, i.e., Top•((X , x0), (Y , y0)) is the set of continuous f : X → Y such
that f (x0) = y0.

DEFINITION B.6. Given a category C, a subcategory, D of C consists of a subcollection obD
of obC and a subcollection MorD of MorC, containing idX for all objects X in obD, such that
MorD is closed under composition.

EXAMPLE B.7. There are many examples of subcategories that arise by restricting the class of
objects, but not restricting the morphisms between the objects. For instance, Ab is the subcat-
egory of Gr where the groups considered are required to be abelian, but given any two abelian
groups G , H , one has Gr(G , H) = Ab(G , H). In this situation, Ab is a full subcategory of Gr.

EXAMPLE B.8. At the other extreme, it is possible to form subcategories where one considers
all the objects, but strictly fewer morphisms. For instance, given a field k, one might consider
the category having as objects the collection of finite-dimensional k vector spaces, but where
the morphisms are restricted to be isomorphisms. This is a subcategory of the usual category of
finite-dimensional k vector spaces and all k linear maps, and it appears in some definitions of
algebraic K -theory.

DEFINITION B.9. Given two categories, C and D, it is possible to form a product category
C×D. The objects in this category are ordered pairs (X ,Y ) where X is an object of C and Y is an
object of D. The morphisms are also ordered pairs, ( f , g ) : (X ,Y ) → (Z ,W ) is a morphism in the
product category if f : X → Z is a morphism in C and g : Y →W is a morphism in D.

DEFINITION B.10. If C is a category, and f : X → Y is a morphism in this category, then we
say that f is an isomorphism if there exists a morphism f −1 : Y → X such that f −1 ◦ f = idX and
f ◦ f −1 = idY . It is immediate that idX is an isomorphism.

REMARK B.11. An isomorphism in Top or a related category is generally called a homeomor-
phism

DEFINITION B.12. If C is a category, and f : X → Y is a morphism in this category, then we
say that f is

(1) a monomorphism if, whenever g ,h : Z → X are morphisms, the statement f ◦ g = f ◦h
implies g = h. That is, f is left cancellable,

(2) an epimorphism if, whenever g ,h : Y → Z are morphisms, the statement g ◦ f = h ◦ f
implies g = h. That is, f is right cancellable,

(3) a bimorphism if it is both a monomorphism and an epimorphism.
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DEFINITION B.13. If C is a category, and f : X → Y is a morphism in this category, then we
say that f is

(1) a split monomorphism if there exists a morphism g : Y → X such that g ◦ f = idX .
(2) a split epimorphism if there exists a morphism g : Y → X such that f ◦ g = idY .

Exercises.

(1) Suppose f : X → Y is an isomorphism. Prove that f −1 is uniquely determined by f .
(2) Prove that the class of isomorphisms in a category has the two-out-of-three property,

namely: if

A
f // B

g // C

are composable morphisms such that two of f , g and g ◦ f are isomorphisms, then so
too is the third.

(3) Prove that the class of isomorphisms in a category has the two-out-of-six property,
namely: if

A
f // B

g // C
h // F

are composable morphisms such that g ◦ f and h◦g are isomorphisms, then so too are
f , g ,h and h ◦ g ◦ f .

(4) Determine the monomorphisms, epimorphisms and bimorphisms in the category of
sets.

(5) Give an example in Top of a bimorphism that is not an isomorphism.
(6) Let Haus denote the full subcategory of Hausdorff topological spaces. Give an example

in Haus of an epimorphism that is not surjective.

2. Functors and Natural Transformations

DEFINITION B.14. Given two categories C and D, a (covariant) functor F : C → D consists of
an assignment

F : obC → obD

and for every pair of objects X ,Y in obC, a function

F : C(X ,Y ) → D(F (X ),F (Y ))

such that

(1) F (idX ) = idF (X ) for all object X of C and
(2) F ( f ◦ g ) = F ( f )◦F (g ) wherever f ◦ g is defined.

EXAMPLE B.15. Given any category C, there is an identity functor idC.

DEFINITION B.16. Given two categories C and D, a contravariant functor F : C → D consists
of an assignment

F : obC → obD

and for every pair of objects X ,Y in obC, a function

F : C(X ,Y ) → D(F (Y ),F (X ))

such that
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(1) F (idX ) = idF (X ) for all object X of C and
(2) F ( f ◦ g ) = F (g )◦F ( f ) wherever f ◦ g is defined.

REMARK B.17. Warning: contravariant functors reverse the direction of morphisms. Failure
to keep adequate track of the variance of functors is the category-theoretical analogue of a sign
error in arithmetic. These errors are minor, frustrating and common.

NOTATION B.18. Given a category C, there is an opposite category, Cop having the same col-
lection of objects, but where

Cop(X ,Y ) = C(Y , X ).

One may view a contravariant functor F : C → D as a covariant functor F : Cop → D.

EXAMPLE B.19. There are many functors in mathematics that consist largely of forgetting
structures. Such functors are often called “forgetful”, but it is difficult to give a precise definition
of what this means. Common examples include:

(1) V : Top• → Top, forgetting the basepoint.
(2) V : Top → Set, forgetting the topology.
(3) V : Ab → Grp, forgetting that the group is abelian.

EXAMPLE B.20. There is a canonical functor η : Cop ×C → Set given by η(X ,Y ) = C(X ,Y ).
Fixing either X or Y gives rise to functors

(1) ηX : C → Set,
(2) ηY : Cop → Set.

DEFINITION B.21. Let F : C → D be a functor. We say F is

(1) full if, for any two objects X ,Y of C, the function F : C(X ,Y ) → D(F (X ),F (Y )) is surjec-
tive.

(2) faithful if, for any two objects X ,Y of C, the function F : C(X ,Y ) → D(F (X ),F (Y )) is
injective.

(3) essentially surjective if, for any object Z of D, one can find an object X of C such that
there exists an isomorphism Z → F (X ).

DEFINITION B.22. Given two (covariant) functors F,G : C → D, a natural transformation Ψ :
F →G consists of a collection of morphismsΨX : F (X ) →G(X ), one for each object X of C, such
that for any morphism h : X → Y in the category C, the square

F (X )
ΨX //

F (h)
��

G(X )

G(h)
��

F (Y )
ΨY // G(Y )

commutes, which is to say: G(h)◦ΨX =ΨY ◦F (h).

REMARK B.23. A similar definition of natural tranformation can be made if F and G are both
contravariant. The details are left to the reader.
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REMARK B.24. The word “natural” is often applied to morphisms between objects in cate-
gories. It should be used only to apply to a morphism that is part of a, possibly implicit, natural
transformation. If the morphisms ΨX are all of a certain type, for instance all isomorphisms or
all inclusions or all homotopy equivalences, then ΨX may be said to be a natural isomorphism
or a natural inclusion or natural homotopy equivalence as appropriate.

EXAMPLE B.25. Fix a field k. Let kVect denote the category of k vector spaces and all linear
maps between them. Then there is a contravariant functor sending f : V →W to f ∗ : W ∗ →V ∗,
where V ∗ = Homk (V ,k) and f ∗ is the evident map Homk (W,k) → Homk (V ,k) given by post-
composing with f .

There is a covariant functor sending f : V → W to f ∗∗ : V ∗∗ → W ∗∗ given by applying V ∗
twice. That is, V ∗∗ is the k vector space of linear functionals on the k vector space of linear
functionals on V . There is a natural transformation e : idVect → (·)∗∗ given by a collection of k-
linear maps eV : V → V ∗∗ given by defining eV (x), where x ∈ V , to be the functional sending
ψ ∈V ∗ to ψ(x).

At least if one assumes the Axiom of Choice, the map eV : V →V ∗∗ defined above is a natu-
ral inclusion. If one restricts to the full subcategory of finite dimensional k vector spaces, then e
is a natural isomorphism, but if V is not finite dimensional, then eV : V →V ∗∗ is not an isomor-
phism.

DEFINITION B.26. If F : C → D is a functor, then we say F is an equivalence of categories if
there exists a functor G : D → C and natural isomorphisms Φ : G ◦F → idC and Ψ : F ◦G → idD.

REMARK B.27. In contrast to the case of isomorphisms, the functor F is not sufficient to
determine G , Ψ and Φ uniquely. The notion of “isomorphism of categories”, where G ◦F and
F ◦G are required to be identity functors, is not particularly common.

REMARK B.28. In the presence of a sufficiently strong version of the Axiom of Choice, a func-
tor is an equivalence of categories if an and only if it is full, faithful, and essentially surjective.

EXAMPLE B.29. Let Fin denote the category of finite sets. This category is not small. Let N de-
note the full subcategory of sets {;, {1}, {1,2}, . . . }. Then N → Fin is an equivalence of categories.
In this situation, one says that N is a small skeleton for Fin.

REMARK B.30. If one restricts attention to small categories, then one can define a “category
of categories”, but as we have remarked, the notion of isomorphism one gets is not generally
useful. It is better to incorporate the natural transformations and form a “2-category” of small
categories, a structure having objects (categories), morphisms (functors), and morphisms of
morphisms (natural tranformations). We will not pursue this further here.

Exercises.

(1) Let F : C → D be a functor. Show that F preserves isomorphisms and split mono- and
epimorphisms. Show by example that it need not preserve monomorphisms or epi-
morphisms that are not split.
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3. Groupoids

DEFINITION B.31. A groupoid is a small category G in which every morphism is an isomor-
phism.

NOTATION B.32. If a,b are two objects in a groupoid G , we will write G (a,b) to denote the
set MorG (a,b).

EXAMPLE B.33. You should think of a groupoid G as an algebraic thing, rather like a group.
The starring role is played by the morphisms in G . The main difference between groups and
groupoids is that if g1, g2 are morphisms in a groupoid G , their composition g2 ◦ g1 may not be
defined.

PROPOSITION B.34. Let G be a groupoid and a an object of G . Composition in the groupoid
endows G (a, a) with the structure of a group.

The proof is an exercise.

EXAMPLE B.35. If a groupoid G has a unique object ∗, then the data of the groupoid is really
just G (∗,∗) = MorG (∗,∗). This is a group (Proposition B.34) and contains all the information of
G . We identify the two concepts: “Group” and “groupoid with one object”.

PROPOSITION B.36. Let G be a groupoid, and let a,b be two objects and suppose G (a,b) is
not empty. The group G (a, a) acts freely and transitively on the right of G (a,b) by composition:

(a
f→ b) · (a

g→ a) = a
f ◦g→ b

and similarly the group G (b,b) acts freely and transitively on the left:

(b
h→ b) · (a

f→ b) = a
h◦ f→ b.

The two actions commute, in that h · ( f · g ) = (h · f ) · g .

PROOF. The actions are well defined and commute by virtue of the rules of composition of
morphisms in categories. We leave the details of this to the reader.

What we will establish is that the actions are free and transitive. It will suffice to show this
for the right action, the other case being similar.

Recall that a (right) action of a group G (a, a) on a set G (a,b) is free if f · g = f implies g is
the identity element. In our case, this is easy to see because f has an inverse morphism and

f ◦ g = f ⇒ f −1 ◦ ( f ◦ g ) = f −1 ◦ f ⇒ g = ida .

Recall that a (right) action of a group G (a, a) on a set G (a,b) is transitive if, for all f1, f2, there
exists g ∈G (a, a) such that f1 ·g = f2. Again, in our case, the groupoid structure implies this. For
a given f1, f2, define g = f −1

1 f2 ∈G (a, a). Then

f1 · g = f2,

as required. □

NOTATION B.37. A set such as G (a,b) equipped with a free transitive right action by a group
G (a, a) is called a right torsor for that group. A left torsor is defined similarly. A set having com-
muting left- and right-torsor structures for two groups is called a bitorsor.
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It is a general feature of bitorsors that the groups acting on the left and right must be iso-
morphic. Here we may prove this directly.

PROPOSITION B.38. Suppose G is a groupoid and f : a → b is a morphism in G . Then the
operation

φ f : G (b,b) →G (a, a), φ f (h) = f −1 ◦h ◦ f

is an isomorphism of groups, with inverse φ f −1 .

One proves that φ f respects composition, and that φ f ◦φ f −1 and φ f −1 ◦φ f are identities.

REMARK B.39. Propositions B.34, B.36 and B.38 impose very strict conditions on groupoids.
That is: a groupoid is a set of objects a, each carrying with it the information of a group

G (a, a) of self maps. If a,b are two objects in G then there are two possibilities:

(1) There are no morphisms a → b. Then G (a, a) and G (b,b) are not related.
(2) There is a morphism f : a → b. Every such morphism yields an isomorphism G (b,b) →

G (a, a). The set of morphisms G (a,b) is a torsor for the groups G (a, a) and for G (b,b).
In particular, if f is a specified morphism, then every other such morphism can be
arrived at uniquely as f · g and also uniquely as h · f . Note that, in contrast to G (a, a)
and G (b,b), the set G (a,b) does not need to have a distinguished ‘identity’ element, so
it does not form a group.

NOTATION B.40. Say that a groupoid G is connected if for all a,b ∈ obG , the set G (a,b) is
not empty. We saw that in a connected groupoid that all the groups G (a, a) are isomorphic. In a
disconnected groupoid, that need not be the case.

3.1. Morphisms of groupoids.

DEFINITION B.41. If G1 and G2 are two groupoids, then a morphism of groupoidsφ : G1 →G2

is a functor. This definitions is equivalent to saying that φ consists of two functions

(1) a function φ from the objects of G1 to the objects of G2;
(2) a function (also denoted φ) from the morphisms of G1 to the morphisms of G2.

and these satisfy the conditions

(1) if f : a → b is an arrow in G1, then φ( f ) :φ(a) →φ(b) is an arrow in G2;
(2) if g ◦ f is a composition in G1, then φ(g ◦ f ) =φ(g )◦φ( f ).

REMARK B.42. You can verify that if G1 and G2 are actually groups, this recovers the defini-
tion of homomorphism of groups.

REMARK B.43. There is a category of groupoids: the objects are the groupoids and the mor-
phisms are the morphisms of groupoids.

4. Adjoint Functors

DEFINITION B.44. Given two functors L : C → D and R : D → C, we say L is left adjoint to R
and R is right adjoint to L if, for any object X of C and Y of D, there exists a bijection

ΨX ,Y : D(L(X ),Y ) → C(X ,R(Y ))
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and such that the bijectionΨ is a natural isomorphism of functors Cop×D → Set. More explicitly,
if f : X → X ′ and g : Y ′ → Y are morphisms in the appropriate categories, then the square of sets

D(L(X ′),Y ′)
ΨX ′ ,Y ′

//

��

C(X ′,R(Y ′))

��
D(L(X ),Y )

ΨX ,Y // C(X ,R(Y ))

commutes.

EXAMPLE B.45. Forgetful functors often have one or both kinds of adjoint. For instance,
the forgetful functor V : Top → Set has both a left- and a right-adjoint. The forgetful functor
V : Ab → Set has a left adjoint, but no right adjoint.

EXAMPLE B.46. A very important family of adjunctions is modelled on the following one: fix
a set X . This gives rise to two functors Set → Set; the cartesian product functor Y 7→ Y ×X , and
the mapping space functor Z 7→ Z X , where Z X is notation for the set of functions X → Z . That
these are indeed functors Set → Set is left as an exercise. We assert that they form an adjoint
pair, in that there is a natural bijection

Set(Y ×X , Z ) → Set(Y , Z X ).

Verifying this is left to the reader.

EXAMPLE B.47. The previous example has a variant for topological spaces, provided some
additional hypothesis is placed on the spaces appearing. For instance, if X is a locally compact
Hausdorff space, then there is a natural bijection

Top(Y ×X , Z ) → Top(Y ,C (X , Z ))

where C (X , Z ) is the space of continuous functions X → Z given the compact–open topology.

DEFINITION B.48. Given an adjoint pair of functors L : C → D and R : D → C, we can define
two natural transformations.

(1) The unit of the adjunction ϵ : idC → R ◦L
(2) The counit of the adjunction η : L ◦R → idD.

The unit is formed by letting ηX : X → R(L(X )) be the element of C(X ,R(L(X ))) corresponding to
idL(X ) ∈ D(L(X ),L(X )) under the natural isomorphism of the adjunction. The counit is formed
similarly.

REMARK B.49. We continue with the notation of the previous definition. The unit and counit
have certain universal properties. In the case of the unit, suppose that there is a morphism f :
X → R(Y ) in C. Since L and R are adjoint, the morphism f is equivalent to a unique morphism
g : L(X ) → Y . This morphism can be written, tautologically, as idL(X ) ◦ g : L(X ) → L(X ) → Y ,
which, by adjunction, is equivalent to a factorization f = R(g )◦ϵX : X → R(L(X )) → R(Y ).

Dually, any morphism h : L(X ) → Y factors uniquely as ηY ◦L(i ) : L(X ) → L(R(Y )) → Y .

REMARK B.50. If L : C → D and M : D → E are two functors, each left adjoint to functors R
and S respectively, then M ◦L is left adjoint to R ◦S.
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PROPOSITION B.51. Suppose L,L′ : C → D are two naturally isomorphic functors and R,R ′ are
right adjoints to L and L′. Then R and R ′ are naturally isomorphic.

This result applies in particular in the case where L = L′.

5. Diagrams, Limits and Colimits

NOTATION B.52. If I is a small category and C is a category, then a functor D : I → C may be
called a diagram. If, for any morphism f : i → j in the category I, the morphism D( f ) depends
only on i and j , then we say the diagram is commutative.

EXAMPLE B.53. Not all commonly occurring diagrams are commutative. For instance, pairs
of parallel morphisms X â Y appear often but form a commutative diagram only when the two
morphisms agree.

DEFINITION B.54. Given a small category I and a category C, one can define a category
Fun(I,C) of I-shaped diagrams. The objects are the functors D : I → C, and the morphisms are
the natural transformations between them.

DEFINITION B.55. Give a small category I, a category C and an object X of C, we can form
the constant I-shaped diagram with value X by constI(X ) : I → C by sending all objects to X and
all morphisms to idX . In fact, constI is a functor constI : C →F (I,C).

DEFINITION B.56. Let I be a small category and C a category.
Given an I-shaped diagram D in C, a limit of D is an object limD of C and a natural trans-

formation Φ : constI(limD) → D such that for any object X of C equipped with a natural trans-
formation Ψ : constI(X ) → D , there is a unique map u : X → limD such that Ψ=Φ◦const(u).

Dually, a colimit of an I-shaped diagram D is an object colimD of C and a natural transfor-
mation Φ : D → constI(colimD) such that for any object X of C equipped with a natural trans-
formation Ψ : D → constI(X ), there is a unique map u : colimD → X such that Ψ= const(u)◦Φ.

REMARK B.57. Strictly speaking a limit or colimit of a diagram encompasses both the object
and the natural transformation of functors—which is to say, the morphisms. In practice, one
often refers to the object as the limit or colimit, leaving the morphisms implicit.

REMARK B.58. It follows easily from a standard argument that if L and L′ are two limits of
the same diagram D : I → C, then there is a unique isomorphism f : L → L′ in C such that the
diagram

constI L

##

constI( f ) // constI L′

{{
D

commutes. A dual statement applies to colimits.
Since they are unique up to unique isomorphism, one often abuses terminology and speaks

of “the limit” or “the colimit” of a diagram.
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REMARK B.59. There is another view of limits and colimits that is sometimes useful. Suppose
the functor constI has a right adjoint ℓ. Then a limit of D is given by the object ℓ(D) and the
counit map constIℓ(D) → D .

Dually, if constI has a right adjoint colim, the colimit of D is the unit map D → constI colim(D).

EXAMPLE B.60. The language used above is technical. In practice, the idea is simple. Let us
consider as a category I the standard cospan

• // • •oo

Let C = Top be the category of topological spaces. Then the data of an I -shaped diagram D
consists of three spaces and two continuous functions X → Y ← Z .

The constant-diagram functor takes a space W and produces W →W ←W , where the mor-
phisms are identities. A natural transformation const(W ) → D is the data of continuous func-
tions f : W → X , g : W → Y and h : W → Z such that

W

f
��

W

g
��

W

h
��

X // Y Zoo

commutes, or, more succinctly

(3) W

f

��

g

  

h

((
X

��
Y // Z .

Note further that the dotted arrow is determined by either f or h, and may be omitted.
The space limD and the natural transformation amounts to an objcet and morphisms fitting

in the following diagram

(4) limD

f
��

h // X

��
Y // Z .
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This diagram has the property that if W is as in Diagram (3), then there exists a unique map
W → limD such that Diagram (5) commutes.

(5) W

f

��

g

##

h

))
limD

��

// X

��
Y // Z .

This particular kind of limit is called a fibre product and is written X ×Y Z . While our def-
inition specifies the limit only up to unique isomorphism, we can easily construct an explicit
model for X ×Y Z in the category of topological spaces. Most usually, let X ×Y Z consist of the
subset of pairs (x, z) ∈ X × Z such that the image of x and of z in Y agree. Then endow X ×Y Z
with the coarsest topology (fewest open sets) such that the evident projection maps X ×Y Z → X
and X ×Y Z → Z are both continuous.

It is instructive to consider X ×Y Z in the following cases:

(1) When Y is a singleton space.
(2) When X → Y is the inclusion of a subspace.

REMARK B.61. By uniqueness of adjoints and of unit or counit maps, if a limit or colimit of
a diagram exists, it is unique up to unique isomorphism.

NOTATION B.62. A category in which all limits can be constructed is complete and one in
which all colimits can be constructed is cocomplete. The following categories are all complete
and cocomplete:

(1) Set.
(2) Top and Top•.
(3) R-Mod.

The full subcategory Haus of Hausdorff topological spaces is complete but not cocomplete.

NOTATION B.63. If D is a diagram in C consisting of a family of objects {Xi }i∈I and no non-
identity arrows, then a limit of D is called a product of {Xi }i∈I and a colimit of D is called a
coproduct of {Xi }i∈I . The product of topological spaces is an example of a categorical product,
and the disjoint union of topological spaces is an example of a categorical coproduct.

NOTATION B.64. If D is a diagram in C of the form

A

��
B // C

then a limit of D is called a pullback of D , and often denoted A×C B .
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The dual concept is the pushout, a colimit of.

A //

��

B

C

PROPOSITION B.65. Suppose F : C → C is a functor between complete categories such that F
has a left adjoint, L. Suppose further that D is a diagram in C. Let limD be a limit of D. Then
F (limD) is a limit of F (D).

Dually, suppose F : C → C is a functor between cocomplete categories such that F has a right
adjoint, R. Suppose further that D is a diagram in C. Let colimD be a limit of D. Then F (colimD)
is a colimit of F (D).

REMARK B.66. Let C be a category. Consider the empty diagram D . If limD exists, then it is
an object ∗ such that all objects X of C are equipped with a unique morphism X →∗. Such an
object ∗ is called a terminal object of C. Any two terminal objects are isomorphic by a unique
isomorphism.

Dually, the colimit of an empty diagram is called an initial object; such an object may often
be denoted ;. If an object is both initial and terminal, then it is called a zero object.

Exercises.

(1) The forgetful functor V : Ab → Set has a left adjoint, L. Describe the unit map ϵ : S →
V (L(S)).

(2) Show that V : Ab → Set does not preserve colimits. For instance, consider the colimit of
a diagram consisting of two nonzero abelian groups and no nontrivial arrows. There-
fore V does not have a right adjoint.

(3) Let R be a ring and let M denote the category of R-modules and R-linear maps, and let
f : M → N be a morphism in M. Describe the limit of the diagram

0

��
M

f // N .

Express the cokernel of f as the colimit of a diagram.
(4) Consider the forgetful functor V : Top• → Top. Describe a left adjoint to this functor.

Prove that V does not have a right adjoint.
(5) Let X be a locally compact Hausdorff space, and consider the adjunction between ×X

and C (X , ·) in Top. Describe the counit of this adjunction.



APPENDIX C

p-Norms

In this appendix we assume an extended real line, where ∞ is an element greater than all
real numbers; the interval notation [1,∞] will be used to mean [1,∞)∪ {∞}.

1. The p norms on Rn

Fix an integer n ≥ 1. When p ≥ 1 is a real number, we define

∥x∥p =
( n∑

i=0
|xi |p

)1/p
.

Define
∥x∥∞ = sup

i
|xi |.

Each of these norms has the following property: given any x ∈ Rn and any r ∈ R, we have

(6) ∥r x∥p = |r |∥x∥p .

This will be important later. It is also immediate, for p ∈ [1,∞], that ∥x∥p = 0 if and only if x = 0.

Hölder conjugates. For a given real number p > 1, the Hölder conjugate of p is the number
q > 1 such that

1

p
+ 1

q
= 1;

this is equivalent to

(7) q = p

p −1
.

Another equivalent formulation is

(8) qp −q −p = 0

Observe that 2 is self-conjugate, but no other number is. We also declare the pair {1,∞} to
be Hölder conjugates.

PROPOSITION C.1 (Young’s Inequality). Let p, q be a Hölder conjugate pair in (1,∞) and sup-
pose a,b are nonnegative real numbers, then

ab ≤ ap

p
+ bq

q

with equality if and only if ap = bq .

109



1. The p norms on Rn 110

EXERCISE C.2. Define

f (x) = xp

p
+ bq

q
−bx.

Using calculus, prove this function has a unique global minimum on (0,∞) and find that mini-
mum.

PROPOSITION C.3 (Hölder’s Inequality). For a given p ∈ [1,∞], having Hölder conjugate q,
and any two vectors x, y in Rn , one has

n∑
i=1

|xi yi | ≤ ∥x∥p∥y∥q .

PROOF. When p = 1 and q =∞, or vice versa, this amounts to the triangle inequality for the
absolute value on R1.

We therefore assume 1 < p < ∞. By referring to (6), we see that it suffices to prove the
proposition after replacing x and y by r x and sy where 0 < r and 0 < s, so we may assume that
∥x∥p = ∥y∥q = 1.

By repeated use of Young’s inequality, we obtain the inequality
n∑

i=1
|xi yi | ≤

n∑
i=1

( |xi |p
p

+ |yi |q
q

)
,

which is
n∑

i=1
|xi yi | ≤

∑n
i=1 |xi |p

p
+

∑n
i=1 |yi |q

q
= ∥x∥p

p

p
+
∥y∥q

q

q
= 1

p
+ 1

q
= 1 = ∥x∥p∥y∥q .

□

PROPOSITION C.4 (Minkowski Inequality). Let p ∈ [1,∞] and x,y ∈ Rn , then

∥x+y∥p ≤ ∥x∥p +∥y∥p .

PROOF. The cases of p = 1 and p =∞ reduce immediately to the usual triangle inequality
for R.

Assume that 1 < p <∞.
Consider a vector w having i -th coordinate wi = |xi + yi |p−1. We calculate

∥w∥q =
( n∑

i=1
|xi + yi |qp−q

)1/q =
( n∑

i=1
|xi + yi |p

)1/q = ∥x+y∥p/q
p

Now we split up ∥x+y∥p
p as follows:

∥x+y∥p
p =

n∑
i=1

|xi + yi |p ≤
n∑

i=1

(|xi ||xi + yi |p−1 +|yi ||xi + yi |p−1)≤ ∥x∥p∥w∥q +∥y∥p∥w∥q

□

where the last inequality is the Hölder inequality. We have a formula for ∥w∥q , which we use
to deduce

∥x+y∥p
p ≤ ∥x∥p∥w∥q +∥y∥p∥w∥q = (∥x∥p +∥y∥p )∥x+y∥p/q

p .
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Dividing through gives
∥x+y∥p ≤ ∥x∥p +∥y∥p ,

which is what we wanted.

EXERCISE C.5. Show that for a given vector x ∈ Rn , the function p 7→ ∥x∥p is decreasing on
p ∈ [1,∞].

Show further that limp→∞ ∥x∥p = ∥x∥∞.

PROPOSITION C.6. Given x ∈ Rn and any p ∈ [1,∞]

∥x∥1 ≥ ∥x∥p ≥ ∥x∥∞ ≥ 1

n
∥x∥1.

This follows from Exercise C.5 and the observation that ∥x∥1 ≤ n∥x∥∞.

PROPOSITION C.7. Given any {p, q} ⊂ [1,∞], there exist constants c,C > 0, such that for any
x ∈ Rn , we have

C∥x∥p ≥ ∥x∥q ≥ c∥x∥p .

This follows immediately from C.6. It may be worthwhile to find the best possible constants
c,C , but we will not do that here.

2. Norms and metrics

DEFINITION C.8. A real normed linear space will consist of an R vector space V and a norm
∥ ·∥ : V → R with the following properties. For all v, w ∈V and r ∈ R:

(1) ∥v∥ ≥ 0, with equality if and only if v = 0.
(2) ∥r v∥ = |r |∥v∥.
(3) ∥v +w∥ ≤ ∥v∥+∥w∥.

An obvious complex analogue of the above also may be defined.

PROPOSITION C.9. For any n ∈ N and any p ∈ [0,∞], the pair (Rn ,∥·∥p ) defined in the previous
section is a normed linear space.

PROOF. Easy. □

PROPOSITION C.10. If (V ,∥ · ∥) is a normed linear space, then the function d(v, w) = ∥v −w∥
defines a metric on V .

PROOF. This is not at all difficult.

(1) Property 1 of Definition C.8 implies immediately that d(x, y) ≥ 0 with equality if and
only if x = y .

(2) Property 2 of Definition C.8 with r =−1 shows that

d(x, y) = ∥x − y∥ = ∥y −x∥ = d(y, x).

(3) Property 3 of Definition C.8 applies to give

d(x, y) = ∥x − y∥ = ∥(x − z)− (y − z)∥ ≤ d(x, z)+d(y, z).

□
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NOTATION C.11. The notation dp is used for the metric associated to the normed linear
space (Rn ,∥ ·∥p ).

3. The p-norms and product metrics

NOTATION C.12. The notation (xn) will be used to denote a sequence (finite or infinite) of
real numbers indexed by a natural number n. So (xn) means the same thing as (x1, x2, x3, . . . ),
finite or infinite depending on context. Occasionally, we will have a need to write something
complicated like the sequence (m,m/2,m/3, . . . ) where there is a parameter. In this case we may
write the sequence as (m/n)n , where the external ‘n’ indicates that n is the variable indexing the
terms of the sequence.

DEFINITION C.13. Let {(X1,d1), . . . , (Xn ,dn)} be a finite set of metric spaces. Let X =∏n
i=1 Xi ,

let p ∈ [1,∞]. Define a function d p : X ×X → [0,∞) by d p ((xi ), (yi )) = ∥(di (xi , yi )∥p .

PROPOSITION C.14. The functions d p defined above are all metrics.

PROOF. Symmetry is immediate. If d p ((xi ), (yi )) = ∥(di (xi , yi )∥p = 0, then di (xi , yi ) = 0 for all
i , and since di is a metric, this implies (xi ) = (yi ). The triangle inequality is given by combining
the triangle inequalities for each di metric with that for ∥ ·∥p , and noting that ∥ ·∥p is increasing
in each variable:

d p ((xi ), (yi )) = ∥(di (xi , yi )∥p ≤ ∥(di (xi , zi ))+ (di (zi , yi ))∥p ≤
≤ ∥(di (xi , zi ))∥p +∥(di (zi , yi ))∥p = d p ((xi ), (zi ))+d p ((zi ), (yi ))

□

PROPOSITION C.15. The metrics d p all generate the same topologies.

PROOF. It suffices to show that for any p, p ′ ∈ [1,∞], any ball Bp ((xi ),ϵ) for the d p metric

with ϵ> 0 contains a ball Bq ((xi ),η) for the d p ′
metric with η> 0 and having the same centre.

We know from Proposition C.7 that there is some constant c > 0 such that c∥(d(xi , yi ))∥p ≤
∥(d(xi , yi ))∥p ′ . Then Bp ′((xi ),cϵ) ⊂ Bp ((xi ),ϵ). □

EXERCISE C.16. The metric d∞ generates the product topology; therefore all the metrics d p

generate the product topology.

REMARK C.17. It is easily seen that dp on Rn from Notation C.11 is the product metric d p

for n copies of (R, | · |). By reference to Proposition C.15, the metric spaces (Rn ,dp ) and (Rn ,dp ′)
all generate equivalent topologies for all p, p ′ ∈ [1,∞], and this topology is the product topology
on Rn = R×·· ·×R.

4. The p-norms on sequence spaces

DEFINITION C.18. If p ∈ [1,∞), we define a set ℓp ⊂ ∏∞
i=1 R to consist of those sequences

(xn) such that
∞∑

i=1
|xi |p
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converges to a real number. For such a sequence, we define

∥(xn)∥p =
( ∞∑

i=1
|xi |p

)1/p
.

PROPOSITION C.19. The pair (ℓp ,∥ ·∥p ) is a normed linear space.

PROOF. Conceptually, in the first place we must show that ℓp is a vector subspace of
∏∞

i=1 R.
We must show it is closed under addition of vectors and under scalar multiplication. In the
second, we must show that ∥ · ∥p has the properties of a norm. In practice, it is simpler to prove
all these facts concerning addition together then all the facts concerning scalar multiplication.

Suppose (xn) and (yn) are sequences in ℓp , then for all N ∈ N( N∑
i=1

|xi + yi |p
)1/p ≤

( N∑
i=1

|xi |p
)1/p +

( N∑
i=1

|yi |p
)1/p

by the Minkowski inequality.
Rearranging this, we deduce

N∑
i=1

|xi + yi |p ≤ (∥(xn)∥p +∥(yn)|p
)p .

The right hand side is the N -th partial sum of the series

(9)
∞∑

i=1
|xi + yi |p

which consists of positive terms. The left hand side is independent of N , and therefore we de-
duce that (9) converges, and the limit is less than or equal to (∥(xn)∥p +∥(yn)∥p )p . Rearranging,
we deduce that

• (xn)+ (yn) ∈ ℓp

• ∥(xn)+ (yn)∥p ≤ ∥(xn)∥p +∥(yn)∥p .

As for scalar multiplication, it is straightforward to show that

∥r (xn)∥p =
( ∞∑

i=1
|r xi |p

)1/p = |r |∥(xn)∥p

which shows that

• r (xn) ∈ ℓp ,
• ∥r (xn)∥p = |r |∥(xn)∥p .

Finally, we observe that ∥(xn)∥ = 0 if and only if every term of (xn) is 0. □

DEFINITION C.20. We define ℓ∞ to consist of those sequences (xn) such that supi∈N |xi | <∞,
i.e. the bounded sequences. We define ∥(xn)∥∞ as supi∈N |xi |.

EXERCISE C.21. With the definitions above (ℓ∞,∥ ·∥∞) forms a normed linear space.

DEFINITION C.22. Let c denote the set of convergent sequences of real numbers, c0 the set
of sequences of real numbers with limit 0, and R∞ or c00 the set of sequences of real numbers
having at most finitely many nonzero terms.
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Unless otherwise specified, we give ℓp the topology induced by the (metric induced by the)
norm ∥ ·∥p . We give c and c0 the topologies inherited from ℓ∞. Which norm, metric or topology
one should place on R∞ is less clear, see Exercise C.30.

PROPOSITION C.23. Suppose p, q ∈ [1,∞) satisfy p < q. Then there are strict inclusions

R∞ ⊂ ℓp ⊂ ℓq ⊂ c0 ⊂ c ⊂ ℓ∞
and if (xn) ∈ ℓp , then ∥(xn)∥p ≥ ∥(xn)∥q ≥ ∥(xn)∥∞.

PROOF. We prove this in several steps:

(1) R∞ ⊂ ℓ1. The inclusion is immediate, and considering the sequence (xn) = (1/2,1/4,1/8, . . . )
for which ∥(xn)∥1 = 1 but which is not in R∞ shows that it is strict.

(2) Suppose p < q ∈ [1,∞). Suppose (xn) ∈ ℓp . For any initial sequence, we have

N∑
i=1

|xi |q ≤
( N∑

i=1
|xi |p

)q/p

since x 7→ ∥x∥p for x ∈ RN is decreasing as a function of p. But this implies that, in the
limit, ∞∑

i=1
|xi |q ≤ ∥(xn)∥q

p ,

from which the inclusion ℓp ⊂ ℓq and the inequality ∥(xn)∥p ≥ ∥(xn)∥q both follow.
We observe that if xn = 1/(n)1/p , then

∑∞
i=1 |xn |p =∑∞

i=1 1/n diverges but
∑∞

i=1 |xn |q =∑∞
i=1 1/nq/p converges, both by the integral test for convergence. So the inclusion is

strict.
(3) If (xn) ∈ ℓq , then the series

∑∞
i=1 |xi |q converges, so limi→∞ xi = 0, so (xn) ∈ c0. The

sequence xn = 1/log(n +1) shows that the inclusion is strict.
(4) Any sequence coverging to 0 converges, so c0 ⊂ c. The inclusion is clearly strict, since

the constant sequence 1 converges, but not to 0.
(5) Any convergent sequence is bounded, so c ⊂ ℓ∞. The sequence (−1)n is bounded but

not convergent.
(6) Finally, we show that if (xn) ∈ ℓp for p <∞, then |xi | → 0 as i →∞. Assume (xn) ̸= 0,

since the case of 0 is trivial. In particular, if s = supi |xi | > 0 is not attained, then there is
some subsequence of (xi ) converging to s > 0, a contradiction. So there is some n such
that supi |xi | = |xn |, and for this value n, we have

∥(xn)∥∞ = n
sup
i=1

|xi | ≤
( n∑

i=1
|xi |p

)1/p ≤ ∥(xn)∥p

by reference to Proposition C.6.

□

COROLLARY C.24. If p < q are elements of [1,∞], then the inclusions ℓp ⊂ ℓq are continuous.

PROOF. These are metric spaces, and it suffices to give an ϵ−δ proof of continuity. Let ϵ> 0
and choose δ= ϵ. For any (xn), (yn) ∈ ℓp , if

∥(xn)− (yn)∥p < δ
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then
∥(xn)− (yn)∥q < δ= ϵ.

So the inclusion is indeed continuous. □

Another useful fact is the following. Each space appearing in Proposition C.23 is a subspace
of the space of all sequences: RN. This space may be equipped with the product topology.

PROPOSITION C.25. Let p ∈ [1,∞]. Then the inclusion ℓp → RN is continuous.

PROOF. The product topology on RN is the weakest (or coarsest) topology making each pro-
jection continuous. In particular, if the functions πi : ℓp → R that take a sequence (xn) to the
i -th term xi are continuous, then the induced map ℓp → RN is continuous, and it is easy to
verify that this map is indeed the inclusion.

So it suffices to show that πi is continuous. Since the source and target are both metric
spaces, an ϵ−δ argument applies. Suppose ∥(xn)− (yn)∥p < ϵ, then in particular |xi − yi | < ϵ,
which implies |πi ((xn))−πi ((yn))| < ϵ. So πi is indeed continuous, and the result follows. □

PROPOSITION C.26. Let p ∈ [0,∞). The subset R∞ is dense in ℓp .

PROOF. Let (xn) be a sequence in ℓp , and for m ∈ N let (xm,n)n denote the sequence for
which xm,n = xn if m ≤ n and xm,n = 0 otherwise.

We wish to show that ℓp = R∞. We show that every element of ℓp is a limit of a sequence of
elements in R∞—this is a sequence of sequences.

Let ϵ> 0. Consider the sequence ((xm,n))m of elements of R∞. Observe that

∥(xm,n)n − (xn)∥p
p =

m∑
i=1

|xi −xi |p +
∞∑

i=m+1
|xi |p =

∞∑
i=m+1

|xi |p .

Since the series
∑∞

i=1 |xi |p converges to ∥(xn)∥p
p , we can find some N such that∣∣∣ m∑

i=1
|xi |p −∥(xn)∥p

p

∣∣∣< ϵp

whenever m > N , which is equivalent to∣∣∣ m∑
i=1

|xi |p −
∞∑

i=1
|xi |p

∣∣∣< ϵp ,

but this is equivalent to saying
∞∑

i=m+1
|xi |p < ϵp

whenever m > N , which is to say that ∥(xm,n)n − (xn)∥p
p < ϵp , and taking p-th roots, we see that

∥(xm,n)n − (xn)∥p < ϵ
whenever m > N . Therefore the sequence ((xm,n))m → (xn) as m →∞. □

EXERCISE C.27. Let p ∈ [1,∞). Let Q∞ ⊂ R∞ denote the set of sequences having only rational-
number terms and which are eventually 0.

(1) Prove Q∞ is dense in ℓp .
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(2) Give c0 the subspace topology inherited from ℓ∞. Prove Q∞ is dense in c0.

COROLLARY C.28. Since Q∞ is in bijection with the countable union
⋃∞

i=1 Qi of countable
spaces, it follows that each of the spaces ℓp for p ∈ [1,∞) or c0 or c is separable, and since they are
metric, they are second countable.

EXERCISE C.29. Prove that ℓ∞ is not separable (and therefore, not second countable)

The situation for infinite-dimensional spaces is therefore much more complicated than for
finite-dimensional spaces. In the finite-dimensional setting, there was only one linear space for
each dimension, Rn , and each of the norms ∥ · ∥p induced the same topology. In the infinite-
dimensional case, the topologies and spaces on which they are defined are all different.

It can be conceptually helpful to view the elements of R∞, that is, finite sequences of some
undetermined length, as the objects one is most likely to encounter in practical situations; the
real world is generally finitist. Then the different spaces ℓp , c0 and c are different choices of
which sequences of elements in R∞ one views as convergent.

EXERCISE C.30. Consider the various normed linear spaces (R∞,∥ · ∥p ) for p ∈ [1,∞]. Prove
that these are pairwise inequivalent as metric spaces by considering which sequences of ele-
ments in R∞ are convergent for the various dp metrics.

4.1. Completeness.

EXERCISE C.31. Prove that the spaces (ℓp ,∥ · ∥p ) are complete for all p ∈ [1,∞]. What can be
said about R∞, c0 and c?

5. The p-norms for functions

This is not a course in measure theory, so we content ourselves with the following inade-
quate treatment.

DEFINITION C.32. Let p ∈ [1,∞). Suppose f : [a,b] → R is a function defined on an interval
[a,b] for which ∫ b

a
| f |p d x

is defined (and finite). Then define

∥ f ∥p =
(∫ b

a
| f |p d x

)1/p
.

REMARK C.33. The integral should really be taken in the sense of Lebesgue, but we will re-
strict our attention to piecewise continuous functions on closed bounded intervals, which will
allow us to use only Riemann integrals, including improper Riemann integrals if necessary.

EXERCISE C.34. Let P [a,b] denote the set of piecewise-continous functions on the closed
bounded interval [a,b]. For f ∈ P [a,b] and p ∈ [1,∞), show that (P [a,b],∥ · ∥p ) makes P [a,b] a
normed linear space.
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DEFINITION C.35. We say that C is an essential supremum for a piecewise continuous func-
tion f : [a,b] → R if the set S of values x for which f (x) >C does not have any interior points—
i.e., S contains no open intervals.

EXERCISE C.36. For f ∈ P [a,b], define ∥ f ∥∞ to be

∥ f ∥∞ = inf{C : C is an essential supremum for | f |}.

Prove that (P [a,b],∥ ·∥∞) is a normed linear space.

EXERCISE C.37. Show that the spaces (P [a,b],∥ ·∥p ) as p varies over [1,∞] are all different.





APPENDIX D

Urysohn’s Lemma and the Tietze Extension Theorem

1. Urysohn’s Lemma

Suppose X is a topological space and suppose that for any two disjoint closed sets C0,C1 ⊂ X
we can find a continuous f : X → R such that f |C0 ≡ 0 and f |C1 ≡ 1. Then f −1(−∞,1/2) and
f −1(1/2,∞) give us two open sets that separate C0 and C1. This implies X is normal.

THEOREM D.1 (Urysohn’s Lemma). Suppose X is a normal topological space and that C0 and
C1 are disjoint closed sets in X . Then there exists a continuous function f : X → [0,1] such that
f (C0) = 0 and f (C1) = 1.

PROOF. Use normality to produce a nested sequence of open sets Ud , one for each dyadic
rational d = a/2n in [0,1]∩Q, such that C0 ⊂U0 and C1 ⊂ X \Ū1, and such that d < d ′ implies
Ūd ⊂Ud ′ . Then define f : X → R by

f (x) =
{

1 if x ̸∈U1

infx∈Ud d otherwise

To prove the function f is continuous, let x ∈ X , and fix ϵ > 0. Write t = f (x). We want to
find an open neighbourhood V of x such that f (V ) ⊂ (t −ϵ, t +ϵ). The cases of t = 0 and t = 1 are
exceptional. If t = 0, then we can find some d < ϵ such that x ∈Ud . Then Ud =V works. If t = 1,
then we can find d > 1−ϵ such that x ̸∈ Ūd . Then X \Ūd works. Therefore assume t ∈ (0,1).

We can find some diadic numbers d1 > d2 > t − ϵ such that x ̸∈Ud1 ⊃Ud2 . We can also find
d3 < t + ϵ such that x ∈Ud3 . Then consider V =Ud3 \Ūd2 . This is an open set containing x, and
f (V ) ⊂ [d2,d3] ⊂ (t −ϵ, t +ϵ).

So f is continuous. □

EXAMPLE D.2. Let X be an uncountable space and let p ∈ X be a point. Define the fortissimo
topology on X as follows: a subset C ⊂ X is closed if p ∈C or if C is countable.

We claim this space is normal. Two disjoint closed sets consist of two disjoint countable
subsets neither containing p, or one countable subset and one subset containing p. In the first
case, the sets are also open since their complements contain p. In the second, the countable set
not containing p is open, and its complement is also open.

Therefore Urysohn’s lemma applies to X . On the other hand, consider a continuous function
f : X → R such that f (p) = 0. Note that {p} itself is a closed point. The sets Un = f −1((−1/n,1/n))
form a countable nested family of open sets in X , each containing p. Therefore each Un is co-
countable. It follows that f −1(0) = ⋂∞

n=1 Un is also cocountable, so that in particular, the closed
set {p} cannot be expressed f −1(0) for any continuous f : X → R.

119
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DEFINITION D.3. If X is a topological space, a Gδ-set is any subset of X that can be written
as an intersection of countably many open subsets.

DEFINITION D.4. A Gδ-space is a topological space X in which every closed subset is a Gδ-
set. A space X is perfectly normal if it is normal and a Gδ-space.

EXERCISE D.5. A space X is perfectly normal if and only if every closed set C is the zero set
of a continuous function f : X → R.

2. Tietze Extension

This will be filled in later
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Gδ-set, 120
Gδ-space, 120
T1, 6
T2, 6
T3-space, 7
T4-space, 7
k-closed, 32
n-th homotopy group of (X , x0), 42
(covariant) functor, 99
étale map, 67

amalgamated product, 59

base, 9
based, 13
based topological spaces, 42
basepoint, 13
bimorphism, 98
bitorsor, 102
boundary of A, 16
box, 12

Cauchy, 20
closed, 5
closed embedding, 11
closure, 15
coarser, 11
cocomplete, 107
cofinite topology, 7
coinduced, 13
colimit, 105, 106
commutative, 105
compact, 23
compact-open, 93
compactification, 28
compactly generated, 32
complete, 20, 107
completion, 21

connected, 35, 103
connected component, 36
constant I-shaped diagram with value X , 105
continuous, 7, 8
contractible, 43
contravariant functor, 99
converges, 18
coproduct, 107
counit, 104
countable, 9
covering space action, 83
covering space map, 67
covering spaces of X , 72
curry, 94

deck transformation, 78
deformation retract, 41
deformation retraction, 41
dense, 16
diagonal, 17
diagonal embedding, 17
diagram, 105
diameter, 25
disconnected, 35
discrete group, 90
discrete topology, 7

embedding, 11
epimorphism, 98
equivalence of categories, 75, 101
equivalent, 47
essential, 43
essentially surjective, 100

faithful, 91, 100
fibre, 67
fibre product, 107
final, 30
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finer, 11
first countable, 9
fortissimo, 119
free, 92, 102
free product, 58
full, 98, 100
fundamental group, 43
fundamental group of X at the base point x0, 49
fundamental groupoid of X with endpoints in A, 48

generated, 10
groupoid, 48, 102

Hausdorff, 6
homeomorphism, 8, 98
homeomorphism of compactifications, 31
homotopic, 39
homotopic relative to A, 39
homotopy, 39
homotopy category, 40
homotopy equivalence, 40
homotopy relative to A, 39

identity morphism, 97
indiscrete topology, 7
induced, 11
initial, 108
initial object, 45
interior, 15
isometry, 20
isomorphism, 98

large, 97
left G-action, 91
left adjoint, 103
left cancellable, 98
left torsor, 102
lift, 68
limit, 105
local base, 9
locally compact, 30
locally connected, 36
locally path-connected, 37

map of compactifications of X , 31
map of covering spaces, 75
metric topology, 6
monodromy action, 72
monomorphism, 98
morphism of groupoids, 103

natural tranformation, 100

natural transformation, 100
neighbourhood, 6
normal, 7, 82
normalizer, 80
nowehere dense, 16
nullhomotopic, 43, 44

one-point compactification, 29
open, 8
open ball around x of radius r , 6
open cover, 23
open embedding, 11
open neighbourhood, 6
open sets, 5
opposite category, 100
orbit, 91

path component, 36
path-connected, 36
perfectly normal, 120
pointed contractibility, 44
pointed homotopy category, 42
pointed spaces, 98
pointed topological space, 13
product, 107
product category, 98
product space, 12
product topology, 12
proper, 87, 92
pseudometric space, 20
pullback, 107
pushout, 59, 108

quotient map, 89, 92
quotient space, 13, 92
quotient topology, 13

reduced word, 58
regular, 7
retract, 41
retraction, 41
reverse, 48
right G-action, 91
right adjoint, 103
right cancellable, 98
right half-open interval topology, 11
right torsor, 102

saturate, 89
saturated, 87
saturated for f , 89
second countable, 10
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semilocally simply connected, 78
sequentially closed, 19
sequentially compact, 26
simply connected, 51
small, 97
small skeleton, 101
smash product, 43
source, 97
sparse, 16
split epimorphism, 99
split monomorphism, 99
stabilizer, 91
starshaped, 45
Stone–Čech compactification, 31
strong deformation retraction, 41
subbase, 10
subcategory, 98
subspace topology, 11
system of open neighbourhoods of x, 9

target, 97
terminal, 108
terminal object, 45
the fundamental groupoid, 49
topological group, 90
topological space, 5
topology, 5
topology of uniform convergence on compact

subsets, 93
totally bounded, 26
totally disconnected, 36
transitive, 92, 102
trivializes, 67
two-out-of-six, 99
two-out-of-three, 99

uncurry, 94
uniform metric, 93
unit, 104
universal cover, 78
universal covering space, 73

weakly Hausdorff, 29
wedge sum, 43
word, 58

zero object, 45, 108
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