1. Some miscellaneous questions about metric spaces. Let \((X,d)\) be a metric space.

(a) Let \(A \subseteq X\) be a nonempty subset. Define \(\text{dist}_A(x) : X \to [0,\infty)\) by \(\text{dist}_A(x) = \inf_{a \in A} d(x, a)\). Prove that \(\text{dist}_A(x)\) is continuous—an \(\epsilon - \delta\) argument may be easier here.

(b) Let \(A \subseteq X\) be a subset. Prove that the following are equal: \(\tilde{A}\) and \(\text{dist}^{-1}_A(0)\).

(c) Let \(C_1\) and \(C_2\) be disjoint closed subsets. Prove there exist disjoint open sets \(U_1 \supseteq C_1\) and \(U_2 \supseteq C_2\).

(d) Suppose \(W\) is a dense subset of \(X\). Prove that for every open \(U\) and every \(x \in U\), there is some ball \(B(w, 1/n)\) where \(n\) is a natural number such that \(x \in B(w, 1/n) \subseteq U\).

(a) First observe that since we have defined \(\text{dist}_A(x)\) as the infimum of a nonempty subset of \(\mathbb{R}\), there exists a sequence of entries \(a_n \in A\) such that \(\text{dist}_A(x) = \lim_{n \to \infty} d(x, a_n)\). For any two points, \(x, y \in X\), we have

\[
\text{dist}_A(y) = \inf_{a \in A} d(y, a) \leq \inf_{a_n} d(y, a_n) \leq \inf_{a_n} d(y, a_n) + d(x, a_n) = d(y, x) + \text{dist}_A(x)
\]

so that

\[
\text{dist}_A(y) - \text{dist}_A(x) \leq d(x, y)
\]

and by symmetry

\[
|\text{dist}_A(x) - \text{dist}_A(y)| \leq d(x, y).
\]

Therefore, if \(\epsilon > 0\), we can take \(\delta = \epsilon\) and deduce that if \(d(x, y) < \delta\), then \(|\text{dist}_A(x) - \text{dist}_A(y)| < \epsilon\). This proves that \(\text{dist}_A\) is a continuous function.

(b) Clearly, \(\text{dist}^{-1}_A(0)\) is a closed subset of \(X\) containing \(A\). Therefore it contains \(\tilde{A}\). Conversely, suppose \(x \in \tilde{A}\), then there exists a sequence \(a_n \in A\) such that \(a_n \to x\). But then \(\text{dist}_A(x) = \lim_{n \to \infty} d(a_n, x)\) for all \(n\), and since the right hand side tends to 0, it follows that \(\text{dist}_A(x) = 0\).

(c) Consider the function \(f(x) = \text{dist}_{C_1}(x) - \text{dist}_{C_2}(x)\). This is continuous, being the difference of two continuous functions. Let \(U_1 = f^{-1}((-\infty, 0))\) and \(U_2 = f^{-1}((0, \infty))\). These are two disjoint open subsets of \(X\). We claim that \(C_1 \subseteq U_1\). To see this, observe that, since \(C_2 \cap C_1 = \emptyset\) by hypothesis, no point in \(C_1\) satisfies \(\text{dist}_{C_2}(x) \leq 0\). On the other hand, all points \(x \in C_1\) satisfy \(\text{dist}_{C_2}(x) = 0\). Therefore, for points \(x \in C_1\), we see that \(f(x) < 0\), so \(x \in U_1\). The argument for \(U_2\) is symmetric.

(d) Let \(x\) be a point and \(U \ni x\) an open neighbourhood. Let \(B(x, 1/m)\) be an open ball around \(x\) contained in \(U\). Then \(B(x, 1/(2m))\) is an open ball as well. Any open subset of \(X\) contains a
point \(w \in W \). Let \(w \in B(x, 1/(2m)) \) and consider \(B(w, 1/(2m)) \). We know that \(d(w, x) < 1/(2m) \) so this ball contains \(x \). Also, if \(y \in B(w, 1/(2m)) \) then the triangle inequality tells us that \(d(x, y) \leq 1/(2m) + 1/(2m) = 1/m \), so that \(y \in B(x, 1/m) \subseteq U \). Therefore \(B(w, 1/(2m)) \subseteq U \) as required.

\[\square \]

2. Give \(\mathbb{R} \) the \textit{counicalable} topology \(\tau \). The closed sets are \(\mathbb{R} \) itself and the countable subsets, i.e., all images of functions \(f : \mathbb{N} \rightarrow \mathbb{R} \). You may assume without proof that the complement of any countable subset of \(\mathbb{R} \) is infinite (in fact, is not a countable set).

(a) Describe all convergent sequences in \((\mathbb{R}, \tau) \).

(b) Describe all sequentially closed subsets of \((\mathbb{R}, \tau) \).

(c) Prove \((\mathbb{R}, \tau) \) is not first countable.

(a) Let \(x_n \rightarrow x \) be a convergent sequence. We claim that there exists some \(N \in \mathbb{N} \) such that \(x_n = x \) for all \(n \geq N \). If not, then we can find some subsequence \((x_{n_i}) \) of \((x_n) \) such that \(x_{n_i} \neq x \) for all \(i \) and \(x_{n_i} \rightarrow x \) since subsequences of convergent sequences converge. But now consider \(\mathbb{R} \setminus \{x_{n_i}\}_{i=1}^{\infty} \). This is an open neighbourhood of \(x \) in the cocountable topology that contains no term of the sequence \(x_{n_i} \), which allegedly converges to \(x \). This is a contradiction.

In the other direction, any eventually-constant sequence converges in all topologies for trivial reasons.

(b) If a sequence \(x_n \) in \(A \) converges to some \(x \in \mathbb{R} \), then \(x_n \) is eventually constant, so that \(x \in A \). Therefore, all subsets of \(\mathbb{R} \) are sequentially closed.

(c) Let \(A \) be an uncountable proper subset of \(\mathbb{R} \), say \(A = [0, 1] \). Then \(A \) is sequentially closed in the cocountable topology, but it is not closed. Since sequentially closed sets in first-countable topologies are closed, it follows that the cocountable topology is not first countable.

\[\square \]

3. Let \(\mathbb{R}^n \) be given the usual (metric) topology, and let \(S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \) be given the subspace topology as a subset of \(\mathbb{R}^2 \). Consider the function \(f : \mathbb{R} \rightarrow S^1 \) given by \(f(\theta) = (\cos 2\pi \theta, \sin 2\pi \theta) \). You may assume \(f \) is continuous. Let \(H = H_{x>0} \) denote the subset of \(S^1 \) consisting of points where \(x > 0 \). Define \(H_{x<0}, H_{y>0} \) and \(H_{y<0} \) similarly.

(a) Give an open interval \(I \subset \mathbb{R} \) and a continuous function \(g : \{(x, y) \in \mathbb{R}^2 \mid -1 < y < 1\} \rightarrow \mathbb{R} \) such that \(f(I) = H \) and \(g(H) = I \), and that the restricted map \(f|_I : I \rightarrow H \) is a homeomorphism with inverse \(g|_H : H \rightarrow I \). You may assume any differentiable function \(h : U \rightarrow \mathbb{R} \), where \(U \) is an open interval, is continuous.
(b) Give, without proof, similar intervals and functions g for $H_{x<0}$, $H_{y>0}$ and $H_{y<0}$.

(c) Show that f is an open function.

(d) Deduce that the map $h : [0,1]/\{0,1\} \to S^1$ given by $h(\theta) = (\cos 2\pi \theta, \sin 2\pi \theta)$ is a homeomorphism.

(a) Consider the function $g : ((x, y) \in \mathbb{R}^2 \mid -1 < y < 1) \to \mathbb{R}$ given by $g((x, y)) = \arcsin y$. This is the composite of the two continuous functions $\pi_2 : ((x, y) \in \mathbb{R}^2 \mid -1 < y < 1) \to (-\pi/2, \pi/2)$ given by projection on the second variable and the differentiable function $\arcsin : (-1, 1) \to \mathbb{R}$.

Let $I = (-\pi/2, \pi/2)$. For $\theta \in I$, we have $\cos \theta > 0$, so $f(I) \subset H$. Moreover, $g(H) = \arcsin y \in I$, using the usual definition of \arcsin. Both f, g are continuous, $g \circ f = \arcsin \sin$, which is the identity on I, and $f \circ g(x, y) = (\sqrt{1 - y^2}, y) = (x, y)$ if $(x, y) \in H_{x>0}$. It follows that $f|_I : I \to H$ is a homeomorphism.

(b) There are many possible choices. The following represent a particular solution. For $H_{x<0}$, choose $g((x, y)) = \pi - \arcsin y$, with $I = (\pi/2, 3\pi/2)$. For $H_{y>0}$ choose $g((x, y)) = \arccos x$ and $I = (0, \pi)$. For $H_{y<0}$ choose $g((x, y)) = -\arccos x$ and $I = (-\pi, 0)$.

(c) It suffices to show that there is a basis of the topology on \mathbb{R} such that $f(U)$ is open for all basis elements U. One basis for \mathbb{R} is given by the set of open intervals of length $\ell < \pi/2$. Any such open interval (a, b) lies entirely within an open interval of one of the following four forms:

i. $I = ((2n - 1/2)\pi, (2n + 1/2)\pi)$
ii. $I = (2n\pi, (2n + 1)\pi)$
iii. $I = ((2n + 1/2)\pi, (2n + 3/2)\pi)$
iv. $I = ((2n + 1/2)\pi, (2n + 3/2)\pi)$

for some integer $n \in \mathbb{Z}$.

In order, the images under f of I are

i. $f(I) = H_{x>0} \cap S^1$
ii. $f(I) = H_{y>0} \cap S^1$
iii. $f(I) = H_{x<0} \cap S^1$
iv. $f(I) = H_{y<0} \cap S^1$

which in each case is an open set in S^1.

In order, the functions

i. $g((x, y)) = 2n + \arcsin(y)$
ii. $g((x, y)) = 2n + \arccos(x)$
iii. $g((x, y)) = 2n + 1 + \arcsin(y)$
iv. $g((x, y)) = 2n + 2 + \arccos(x)$
give a continuous inverse to the function \(f_I : I \to f(I) \subset S^1 \). Therefore the image of \((a, b) \subset I\) is an open subset of \(f(I) \), which in turn is open in \(S^1 \), and so \(f((a, b)) \) is open, as required.

(d) The scaling function \(\mathbb{R} \to \mathbb{R} \) given by \(\theta \mapsto 2\pi \theta \) is a homeomorphism. We deduce that the function \(\mathbb{R} \to S^1 \) given by \(x \mapsto (\cos 2\pi \theta, \sin 2\pi \theta) \) is an open map.

It is sufficient to prove that the map \(h \) is open, since we already know it is bijective and continuous (from class). To prove it is open, it is sufficient to prove that for each point \(x \in [0,1]/\{0,1\} \), there is some local base at \(x \) that \(h \) maps to an open set in \(S^1 \). For all points \(x \in (0,1) \), this follows immediately from the previous parts of this question. The remaining case is the point \(* \) obtained by identifying \(0 \sim 1 \). The open neighbourhoods of \(* \) are precisely the images of open neighbourhoods of \(\{0,1\} \) in \([0,1] \). A local base can therefore be written down for \(* \): for instance the sets \(\{* \cup (0,\epsilon) \cup (1-\epsilon,1)\} \) for \(0 < \epsilon < 1/4 \). The image under \(h \) of such a set is again open by reference to Part 2.

\[\Box \]

4. We know that sequences are not sufficient in general topological spaces to determine when \(x \in \bar{A} \). This question shows that a kind of generalized sequence is sufficient. A directed set \(D \) is a nonempty set equipped with a relation \(\leq \) satisfying:

(a) \(x \leq x \) for all \(x \in D \).

(b) if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)

(c) for all \(x, y \) there exists some \(w \) such that \(x \leq w \) and \(y \leq w \).

Given a directed set \(D \), define set \(D \cup \{\infty\} \) by adding a disjoint point “\(\infty \)”. Put a topology on \(D \cup \{\infty\} \) by declaring the following sets to be open:

- All subsets of \(D \)
- All subsets of \(D \cup \{\infty\} \) containing a set of the form \(S_d = \{x \in D \mid x \geq d\} \cup \{\infty\} \) where \(d \in D \).

You do not have to verify that this is a topology.

Let \(X \) be a topological space. Any function \(f : D \to X \) is called a net in \(X \). The net is said to converge to \(x \in X \) if there exists a continuous function \(\tilde{f} : D \cup \{\infty\} \to X \) such that \(\tilde{f}(\infty) = x \) and \(\tilde{f}|_D = f \). Suppose \(A \subset X \) is a subset and \(x \in \bar{A} \). Produce a directed set \(D \) and a net \(f : D \to X \) with image in \(A \) that converges to \(x \).

If \(x \in A \), we can set \(D = * \) and define both \(f : D \to X \) and \(\tilde{f} : D \cup \{\infty\} \to X \) to be constant functions with value \(x \). Therefore we may assume that \(x \not\in A \).

Let \(D \) denote the set of open sets \(U \ni x \) in \(X \). We verify that this is a directed subset under the relation \(U \leq V \) if \(V \subset U \). Clearly this relation is reflexive and transitive. If \(U \ni x \) and \(W \ni x \) are open sets, then \(U \cap W \ni x \) is an open set as well. Both \(U \leq U \cap W \) and \(W \leq U \cap W \). Therefore \(D \) is a directed set.

Now define a function \(f : D \to X \) as follows: for each \(U \ni x \) there is some \(a_U \in A \cap U \). This is because \(x \in \bar{A} \), and so every open neighbourhood of \(x \) intersects \(A \). Our hypothesis that \(x \notin A \) ensures that \(x \neq a_U \).
Let $f(U) = a_U^2$. Extend this to $\tilde{f} : D \cup \{\infty\} \to X$ by setting $\tilde{f}(\infty) = x$. By construction, the image of f is in A. We claim that \tilde{f} is continuous.

Let $U \subseteq X$ be an open set. If $x \notin U$, then $\tilde{f}^{-1}(U) \neq \infty$. Since any subset of D is open in $D \cup \{\infty\}$, in particular, $\tilde{f}^{-1}(U)$ is open. If $x \in U$, then consider the element $U \in D$. We claim that $S_U \subseteq \tilde{f}^{-1}(U)$. Let $V \supseteq U$ in D, i.e., $V \subseteq U$ as open subsets of X. Then $a_V \in VU$, so $a_V \in U$, so that $\tilde{f}(V) = a_v \in U$. Equivalently, $V \in \tilde{f}^{-1}(U)$. We deduce the containment $S_U \subseteq \tilde{f}^{-1}(U)$, so that $\tilde{f}^{-1}(U)$ is open.

It follows that $f : D \to X$ converges to x. □

5. Let $\mathbb{R}^\mathbb{N}$ denote the set $\prod_{i=1}^{\infty} \mathbb{R}$ (i.e. the set of all sequences (r_1, r_2, \ldots) of real numbers), and let c_{00} denote the subset consisting of those sequences (r_1, r_2, \ldots) that are eventually 0, that is, for which there exists $N \in \mathbb{N}$ such that $r_i = 0$ for $i > N$.

(a) Give $\mathbb{R}^\mathbb{N}$ the product topology. Show that $\overline{c_{00}} = \mathbb{R}^\mathbb{N}$.

(b) Give $\mathbb{R}^\mathbb{N}$ the box topology. What is $\overline{c_{00}}$?

(a) Let $x = (x_1, x_2, \ldots) \in \mathbb{R}^\mathbb{N}$ be an element, and let $V \ni x$ be a neighbourhood of x. Then V contains a basis element containing x, i.e. a set of the form $U_1 \times U_2 \times \cdots \times U_n \times \mathbb{R} \times \mathbb{R} \times \cdots$, where each U_i is open in \mathbb{R}. Since $x_i \in U_i$, no U_i can be empty. We may choose an element $r = (r_1, r_2, \ldots, r_n, 0, 0, 0, \ldots)$ where $r_i \in U_i$. Then $r \in V \cap c_{00}$, and so every open neighbourhood of x has nonempty intersection with c_{00}, therefore $x \in \overline{c_{00}}$.

(b) Suppose $x \notin c_{00}$. Construct an open neighbourhood as follows: if $x_i = 0$, then let $U_i = \mathbb{R}$. If $x_i \neq 0$, then let $U_i \subseteq \mathbb{R}$ be an open neighbourhood of x_i that does not contain 0. Since $x \notin c_{00}$, we must have $0 \notin U_i$ for infinitely many values of i. Then let $V = U_1 \times U_2 \times \cdots$, which is an open neighbourhood of x in the box topology. This neighbourhood does not contain any sequence that is eventually 0 since there are infinitely many $U_i \neq 0$, so $x \notin \overline{c_{00}}$. It follows that $c_{00} = \overline{c_{00}}$. □

Note for pedants: we have used the axiom of choice here.