1. Read the supplementary notes on p-norms.
 (a) Show that for a given vector $x \in \mathbb{R}^n$, the function $p \mapsto \|x\|_p$ is (weakly) decreasing on $p \in [1, \infty]$.
 (b) Show that $\lim_{p \to \infty} \|x\|_p = \|x\|_\infty$.

2. Again, refer to the supplementary notes on p-norms.
 (a) Suppose $\{(X_1, d_1), \ldots, (X_n, d_n)\}$ is a finite set of metric spaces and write $X = \prod_{i=1}^n X_i$. Let $p \in [0, \infty]$. Define a product p-metric on X as follows. If $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are elements of X, then let $d(x, y) = \|(d_1(x_1, y_1), d_2(x_2, y_2), \ldots, d_n(x_n, y_n))\|_p$. Prove that d is a metric on X.
 (b) Prove that $d_p(x, y) = \|x - y\|_p$ defines a metric on \mathbb{R}^n for any $p \in [1, \infty]$. You can do this directly, or apply the previous part to an n-fold product of $(\mathbb{R}, |\cdot|)$.
 (c) Let $p, q \in [1, \infty]$. Show that the metric topology associated to d_p and to d_q on \mathbb{R}^n agree. It may be helpful to refer to Lemma 20.2 of Munkres’ Topology.

3. Let \mathcal{C} be a category and let $f : A \to B$ be a morphism in \mathcal{C}. We say f is an epimorphism if it has the property that whenever $g_1 : B \to X$ and $g_2 : B \to X$ are morphisms such that $g_1 \circ f = g_2 \circ f$, then $g_1 = g_2$. Describe, with proof, the epimorphisms in the category of sets.

4. Give \mathbb{N} the cofinite topology, where the nonempty open sets are those sets containing all but finitely many elements. Give \mathbb{R} the usual topology. Describe, with proof, the continuous functions $f : \mathbb{N} \to \mathbb{R}$.

5. Let $\{(A_i, \tau_i)\}_{i \in I}$ be a family of topological spaces. Let $A = \prod_{i \in I} A_i$ and let τ denote the product topology. Let U be a nonempty open set and denote $\text{im}(\pi_i|_U)$ by $\pi_i(U)$. Note that $\pi_i(U) = A_i$ for all but finitely many values of $i \in I$ (we say for almost all values of i). This can be proved by proving it for the elements of the basis consisting of finite intersections of sets of the form $\pi_i^{-1}(U)$.
 (a) Define a topology, β, on $A = \prod_{i \in I} A_i$ as the topology generated by sets of the form V satisfying “$\pi_i(V)$ is open in A_i for all values of $i \in I$”. This is the box topology. Prove that the box topology is finer than the product topology.
 (b) Prove that if I is finite, the box topology and product topology are the same.
(c) Prove that if \(I = \mathbb{N} \) and \(A_i = \mathbb{R} \) with the usual topology that the box and product topologies are not the same. It may be helpful here, and subsequently, to understand this product \(\prod_{i=1}^{\infty} \mathbb{R} \) as the set of all infinite sequences of real numbers.

6. Let \(\mathbb{R}^\mathbb{N} \) denote the set \(\prod_{i=1}^{\infty} \mathbb{R} \) (i.e. the set of all sequences \((r_1, r_2, \ldots)\) of real numbers), and let \(c_0 \) denote the subset consisting of those sequences \((r_1, r_2, \ldots)\) that are eventually 0, that is, for which there exists \(N \in \mathbb{N} \) such that \(r_i = 0 \) for \(i > N \).

 (a) Read Theorem 19.1 of Munkres’ topology.

 (b) Give \(\mathbb{R}^\mathbb{N} \) the product topology. Show that \(c_0 = \mathbb{R}^\mathbb{N} \).

 (c) Give \(\mathbb{R}^\mathbb{N} \) the box topology. What is \(c_0 \)?