1. Give \mathbb{N} the cofinite topology, where the nonempty open sets are those sets containing all but finitely many elements. Give \mathbb{R} the usual topology. Describe, with proof, the continuous functions $f : \mathbb{N} \to \mathbb{R}$.

2. Here A, B and the family $\{A_i\}_{i \in I}$ are subsets of a topological space X. In each case, prove the identity given is true, or give a counterexample to show it is false. For producing counterexamples, it may be helpful to know that in a metric topology, any singleton subset $\{x\}$ is closed, since for $y \in X \setminus \{x\}$ we have $B(y, d(x, y)) \subset X \setminus \{x\}$.

 (a) $A \cup B = \overline{A \cup B}$,

 (b) $\bigcup_{i \in I} A_i = \overline{\bigcup_{i \in I} A_i}$,

 (c) If A is open, then $\text{Int} A = A$,

 (d) $\partial A = \emptyset$ if and only if A is both closed and open.

Moreover, prove that

 (e) ∂A is the set of points $x \in X$ such that for all open $U \ni x$, both $U \cap A \neq \emptyset$ and $U \cap (X \setminus A) \neq \emptyset$.

3. Let \mathbb{R}^n be given the usual (metric) topology, and let $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ be given the subspace topology as a subset of \mathbb{R}^2. Consider the function $f : \mathbb{R} \to S^1$ given by $f(\vartheta) = (\cos \vartheta, \sin \vartheta)$. You may assume f is continuous. Let $H = H_{x>0}$ denote the subset of S^1 consisting of points where $x > 0$. Define $H_{x<0}$, $H_{y>0}$ and $H_{y<0}$ similarly.

 (a) Give an open interval $I \subset \mathbb{R}$ and a continuous function $g : \{(x, y) \in \mathbb{R}^2 \mid -1 < y < 1\} \to \mathbb{R}$ such that $f(I) = H$ and $g(H) = I$, and that the restricted map $f|_I : I \to H$ is a homeomorphism

1 This is an abuse of notation: strictly, by $f|_I$ we mean the unique function $\phi : I \to H$ such that the composite of ϕ with the inclusion $H \subset S^1$ agrees with the composite of the inclusion $I \subset \mathbb{R}$ with $f : \mathbb{R} \to S^1$.

4. Let $\{(A_i, \tau_i)\}_{i \in I}$ be a family of topological spaces. Let $A = \prod_{i \in I} A_i$ and let τ denote the product topology.
Let U be a nonempty open set and denote $\text{im}(\pi_i|_U)$ by $\pi_i(U)$. Note that

 $\pi_i(U) = A_i$

for all but finitely many values of $i \in I$ (we say for almost all values of i). This can be proved by proving it for the elements of the basis consisting of finite intersections of sets of the form $\pi_i^{-1}(U)$.
(a) Define a topology, \(\beta \), on \(A = \prod_{i \in I} A_i \) as the topology generated by sets of the form

\[
\bigcap_{i \in I} \pi^{-1}_i(V_i)
\]

where \(V_i \) is open in \(A_i \) for all values of \(i \in I \). This is the box topology. Prove that the box topology is finer than the product topology.

(b) Prove that if \(I \) is finite, the box topology and product topology are the same.

(c) Prove that if \(I = \mathbb{N} \) and \(A_i = \mathbb{R} \) with the usual topology that the box and product topologies are not the same. It may be helpful here, and subsequently, to understand this product \(\prod_{i=1}^{\infty} \mathbb{R} \) as the set of all infinite sequences of real numbers.

5. Read at least the first three sections of the supplementary notes on \(p \)-norms (the fourth section will be required for a later homework assignment).

(a) Show that for a given vector \(x \in \mathbb{R}^n \), the function \(p \mapsto \|x\|_p \) is (weakly) decreasing on \(p \in [1, \infty) \).

(b) Show that \(\lim_{p \to \infty} \|x\|_p = \|x\|_\infty \).