1. Recall that a Hausdorff space X is perfectly normal if, for every closed set A, there exists a continuous function $f_A : X \to [0, 1]$ such that $f_A^{-1}(0) = A$. In such a space, for any two disjoint closed sets A, B, there exists a continuous function

$$f : X \to [0, 1], \quad f = \frac{f_A}{f_A + f_B}$$

for which $f^{-1}(0) = A$ and $f^{-1}(1) = B$.

Suppose X is perfectly normal, that C is a closed subset of X and $g : C \to [-1, 1]$ is a continuous function.

(a) By considering $g^{-1}([-1, -1/3])$ and $g^{-1}([1/3, 1])$, construct a continuous function $h_1 : X \to [-1/3, 1/3]$ such that $|h_1(c) - g(c)| \leq 2/3$ for all $c \in C$.

(b) Produce a sequence (h_n) of continuous functions $h_n : X \to [-1 + (2/3)^n, 1 - (2/3)^n]$ such that

i. $|h_n(c) - g(c)| \leq (2/3)^n$ for all $c \in C$.

ii. $|h_n(x) - h_{n-1}(x)| \leq (1/3)(2/3)^{n-1}$ for all $x \in X$.

(a) The sets $A = g^{-1}([-1, -1/3])$ and $B = g^{-1}([1/3, 1])$ are closed and disjoint, and so, since X is perfectly normal, we can produce a continuous $h_1 : X \to [-1/3, 1/3]$ that takes the value $-1/3$ on A, the value $1/3$ on B and values in-between elsewhere. We can estimate $|h_1(c) - g(c)|$ by dividing into three distinct cases. If $c \in A$, then $h_1(c) = -1/3$ and $g(c) \in [-1, -1/3]$, so $|h_1(c) - g(c)| \leq 2/3$. If $c \in B$, then $h_1(c) = 1/3$ and $g(c) \in [1/3, 1]$, so $|h_1(c) - g(c)| \leq 2/3$. Finally if $c \in C - (A \cup B)$ then $g(c) \in (-1/3, 1/3)$ and $h_1(c) \in (-1/3, 1/3)$ so $|h_1(c) - g(c)| \leq 2/3$, as required.

(b) We proceed by induction. The previous part of the question established the case of $n = 1$. Let us suppose h_{n-1} has been constructed meeting the conditions for $n - 1$. Then let us consider $g_n = g - h_{n-1}$. The conditions on h_{n-1} ensure that $g_n : C \to [-2(2/3)^{n-1}, (2/3)^n - 1]$. By the same argument used in the previous part, we can construct a continuous function $f_n : X \to [-2(2/3)^{n-1}(1/3), (2/3)^n - 1(1/3)]$ such that $|f_n(c) - g_n(c)| \leq (2/3)^n$ for all $c \in C$. Now set

$$h_n = h_{n-1} + f_n.$$

Finally can carry out some estimates:

- First,

$$|h_n(x)| \leq |h_{n-1}(x)| + |f_n(x)| \leq (1 - (2/3)^{n-1}) + (2/3)^n - 1(1/3) = 1 - (2/3)^n.$$

This implies that $h_n : X \to [-1 + (2/3)^n, 1 - (2/3)^n]$, as required.
• Second, if \(c \in C \), then

\[
|h_n(c) - g(c)| = |h_{n-1}(c) + f_n(c) - g_n(c) - h_{n-1}(c)| = |f_n(c) - g_n(c)| \leq (2/3)^n
\]

as required.

• Third, \(|h_n(x) - h_{n-1}(x)| = |f_n(x)| \leq (1/3)(2/3)^{n-1} \), as required.

\[\square\]

2. Suppose \((f_n : X \to \mathbb{R})\) is a sequence of functions, where \(X\) is a topological space. We say that \((f_n)\) converges to a function \(f : X \to \mathbb{R}\) uniformly if, for all \(x \in X\) and all \(\epsilon > 0\), there exists some \(N_\epsilon \in \mathbb{N}\) such that \(|f_n(x) - f(x)| < \epsilon\) for all \(n > N_\epsilon\). Suppose you are given a sequence of continuous functions \(f_n : X \to \mathbb{R}\) converging uniformly to \(f : X \to \mathbb{R}\). Prove that \(f\) is continuous.

Consider an open set \(U \subset \mathbb{R}\). We show that \(f^{-1}(U)\) is open in \(X\). To do this, suppose \(x \in f^{-1}(U)\). We produce an open set \(V \ni x\) such that \(f(V) \subset U\).

Choose \(\epsilon > 0\) sufficiently small so that \((f(x) - 3\epsilon, f(x) + 3\epsilon) \subset U\). Choose some \(n\) sufficiently large that \(|f(y) - f_n(y)| < \epsilon\) for all \(y\). Let \(V\) be the open set \(f_n^{-1}((f(x) - \epsilon, f(x) + \epsilon))\). We show \(f(V) \subset U\). For any \(y \in V\), we have

\[
|f(y) - f(x)| = |f(y) - f_n(y) + f_n(y) - f_n(x) + f_n(x) - f(x)| \leq |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)| < \epsilon + \epsilon + \epsilon = 3\epsilon
\]

so that \(f(y) \in (f(x) - 3\epsilon, f(x) + 3\epsilon) \subset U\), as required. This proves that \(f\) is continuous. \[\square\]

3. You may use the results of the previous two problems in answering this one.

Suppose \(X\) is a perfectly normal topological space and \(C \subset X\) is a closed subset. Suppose \(g : C \to [-1, 1]\) is a continuous function. Construct a continuous function \(h_\infty : X \to [-1, 1]\) such that \(h_\infty(c) = g(c)\) for all \(c \in C\). Give an example, with proof, of a perfectly normal (e.g., metric) space \(X\), a subset \(A \subset X\), and a continuous function \(g : A \to [-1, 1]\) such that there does not exist a continuous \(h : X \to [-1, 1]\) for which \(h(a) = g(a)\) for all \(a\).

Using the results of Question 1, we know that there exists a sequence of continuous functions \(h_n : X \to [-1, 1]\) satisfying certain conditions defined there. Define a function \(h_\infty : X \to [-1, 1]\) by \(h_\infty(x) = \lim_{n \to \infty} h_n(x)\). This exists because property (ii) of Question 1 ensures \((h_n(x))\) is a Cauchy sequence:

\[
|h_n(x) - h_{n+d}(x)| \leq \sum_{i=n}^{n+d-1} \frac{2^i}{3^i} = \frac{2^{n+1} - 2^n}{3^n} \leq \frac{2}{3^n}
\]

and the upper bound can be made arbitrarily small.

2
Observe that \(h_\infty(c) = g(c) \) if \(c \in C \), since \(|h_n(c) - g(c)| \to 0 \) as \(n \to \infty \).

We claim that \(h_n \to h \) uniformly. Using the result of Question 2, this will prove that \(h \) is continuous. This is similar to the proof of the Cauchy property. For all \(x \in X \), for all \(n \in \mathbb{N} \) and all \(d \in \mathbb{N} \):

\[
|h_\infty(x) - h_n(x)| \leq |h_\infty(x) - h_{n+d}(x)| + |h_n(x) - h_{n+d}(x)| < |h_\infty(x) - h_{n+d}(x)| + \frac{2^n}{3^n}
\]

using an estimate we established earlier.

Taking the limit as \(d \to \infty \) gives us:

\[
|h_\infty(x) - h_n(x)| \leq \frac{2^n}{3^n}.
\]

The bound is independent of \(x \) and tends to 0 as \(n \to \infty \), so we see that convergence of \(h_n \to h_\infty \) is indeed uniform.

To see that the closure hypothesis is necessary, consider the function \(g : (-\infty, 0) \cup (0, \infty) \to [-1, 1] \) given by \(g(x) = -1 \) if \(x < 0 \) and \(g(x) = 1 \) if \(x > 0 \). This function is continuous, but it is not possible to define \(h(0) \) in such a way as to make \(h : \mathbb{R} \to [-1, 1] \) continuous, since \(\lim_{x \to 0^-} h(x) = -1 \) and \(\lim_{x \to 0^+} h(x) = 1 \).

The result proved in this question is called the “Tietze Extension Theorem”. In fact, one does not need the space \(X \) to be perfectly normal, merely normal. If the space is assumed to be normal, one may use a result called Urysohn’s lemma to produce the functions required. Since metric spaces are perfectly normal, however, assuming perfect normality is good enough for almost all purposes.

\(\square \)