1. Let $X = \{g,s\}$, and endow X with the following topology: The subsets $\{\emptyset,X,\{g\}\}$ are open. Give $[0,1]$ the usual metric topology.

 (a) Suppose $f : X \to [0,1]$ is a continuous function such that $f(s) = 0$. Show that $f(g) = 0$.

 (b) Produce, with proof, a nonconstant continuous function $f : [0,1] \to X$.

2. Let X be a topological space and let A,B be two closed subsets of X such that $X = A \cup B$. Let Y be a topological space. Suppose $f : X \to Y$ is a function such that the restrictions $f|_A : A \to Y$ and $f|_B : B \to Y$ are continuous (A and B are given the subspace topologies). Prove that f is continuous.

3. Let (X,d) be a metric space. Recall that a sequence (x_n) in X is said to be a Cauchy sequence if, for all $\epsilon > 0$, there exists some $N_\epsilon \in \mathbb{N}$ such that $d(x_n,x_m) < \epsilon$ for all $n,m > N_\epsilon$. The space X is said to be complete if every Cauchy sequence converges in X. Given an example of a homeomorphism $f : X \to Y$ of metric spaces where X is complete and Y is not complete.