MATH 308 MIDTERM

B. Williams

There are 5 questions, they carry equal weight. Answer all questions. This exam should be 8 pages long, and conclude with the symbol ‘.oOo.’ Please check that this is the case.

Show all your work.

No notes, calculators or textbooks are permitted.

Name (print):

Student ID number:

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Total
(1) Three points A, B, C are given. Using a straightedge and compass, construct a triangle ABD such that $|AD| = |AC|$ and such that the angle $\angle DAB$ is a right angle. No points will be given if it is not clear what steps you followed.

The following diagram should make a construction clear. There are other constructions, but this is the easiest. The large circles have centres E and F. The small circle has centre A.
(2) In the given diagram, 6 lines and a circle are given. The circle \(c \) has radius \(\frac{1}{2} \) and passes through \(B = (0, 0) \) and \(A = (0, 1) \). The point \(D \) has coordinates \((t,1)\), where \(t > 0 \). The lines \(AD \) and \(EF \) are both parallel to the \(x \)-axis, and \(DF \) is parallel to the \(y \)-axis.

(a) Write down an equation for the line \(L \) passing through \(B, D \) and \(E \).

\[
t y - x = 0
\]

(b) Write down an equation for the circle \(c \) passing through \(A \) and \(B \) with radius \(\frac{1}{2} \).

\[
x^2 + (y - 1/2)^2 = 1/4, \text{ or, expanding out, } x^2 + y^2 - y = 0.
\]
(c) Give the coordinates of the point F. The answer will depend on t.

First we find E the point of intersection of the line L and the circle. Since this point lies on L, its coordinates satisfy $ty = x$. Then, since it lies on the circle, its coordinates satisfy $(ty)^2 + y^2 - y = 0$. We are interested in the point with nonzero y coordinate, so we may divide by y, obtaining $(t^2 + 1)y = 1$, or $t = \frac{1}{t^2 + 1}$. The y coordinates of the points E and F are equal. The x coordinates of the points F and $(t, 1)$ are equal. Therefore

$$F = \left(t, \frac{1}{t^2 + 1}\right)$$
(3) Suppose two coordinate systems are given: C_1 and C_2.

Let p_2 denote the origin in C_2, and let L_2, M_2 denote the x-axis and y-axis for C_2 respectively. We give the coordinates

$$p_2 = \begin{bmatrix} 13 \\ 26 \end{bmatrix}$$

Moreover, L_2 and M_2 are described in C_1 by

$$\begin{bmatrix} x \\ y \end{bmatrix} = p_2 + t \begin{bmatrix} 5 \\ 12 \end{bmatrix}, \quad \begin{bmatrix} x \\ y \end{bmatrix} = p_2 + t \begin{bmatrix} 12 \\ -5 \end{bmatrix}$$

respectively.

(a) Describe all points on L_2 and M_2 having distance 1 from p_2.

Points on L having distance 1 from p_2 are points of the form $p_2 + t \begin{bmatrix} 5 \\ 12 \end{bmatrix}$ where

$$\left\| \begin{bmatrix} 5 \\ 12 \end{bmatrix} \right\| = 1.$$ A simple calculation shows that this is the case when $t = \pm 1/13$. The points are therefore

$$\begin{bmatrix} 13 \\ 26 \end{bmatrix} + \frac{1}{13} \begin{bmatrix} 5 \\ 12 \end{bmatrix}, \quad \begin{bmatrix} 13 \\ 26 \end{bmatrix} - \frac{1}{13} \begin{bmatrix} 5 \\ 12 \end{bmatrix}.$$
Note: This much suffices to do the rest of the question, you do not have to simplify further. Similarly, the points on M are the points
\[
\begin{pmatrix} 13 \\ 26 \end{pmatrix} + \frac{1}{13} \begin{pmatrix} 12 \\ -5 \end{pmatrix}, \quad \begin{pmatrix} 13 \\ 26 \end{pmatrix} - \frac{1}{13} \begin{pmatrix} 12 \\ -5 \end{pmatrix}.
\]

(b) How many coordinate systems C_2 are there that meet the conditions outlined above?

There are 2 choices for the point $(1,0)$ in C_2 and 2 choices for the point $(0,1)$. Therefore there are 4 choices in all. Therefore there are 4 such coordinate systems.

(c) Choose one particular coordinate system C_2 such that all the conditions in the question are satisfied. Give an explicit (matrix-and-vector) description of the function $T : \mathbb{R}^2 \to \mathbb{R}^2$ that converts C_2-coordinates to C_1-coordinates.

We choose the vectors $\begin{pmatrix} 13 \\ 26 \end{pmatrix} + \frac{1}{13} \begin{pmatrix} 5 \\ 12 \end{pmatrix}$ and $\begin{pmatrix} 13 \\ 26 \end{pmatrix} + \frac{1}{13} \begin{pmatrix} 5 \\ 12 \end{pmatrix}$ to be $(1,0)$ and $(0,1)$ in C_2, respectively. The other choices lead to similar, but different, answers.

With these choices, we can write down
\[
T \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} 5/13 & 12/13 \\ 12/13 & -5/13 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 13 \\ 26 \end{pmatrix}.
\]

Note: At this point, it is wise to verify that T translates $(0,0)$ in C_2 coordinates into $(13,26)$ in C_1 coordinates (so the point called $(0,0)$ in C_2 is called $(13,26)$ in C_1).
(d) Give an explicit description of the function $S : \mathbb{R}^2 \to \mathbb{R}^2$ that converts C_1-coordinates to C_2-coordinates

The inverse of T can be calculated explicitly (as was done in the class notes). If $T(\vec{x}) = A\vec{x} + \vec{c}$, then $S(\vec{x}) = A^T\vec{x} - A\vec{c}$ (exploiting the fact that $A^T = A^{-1}$).

$$S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 5/13 & 12/13 \\ 12/13 & -5/13 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{bmatrix} 5/13 & 12/13 \\ 12/13 & -5/13 \end{bmatrix} \begin{pmatrix} 13 \\ 26 \end{pmatrix} = \begin{bmatrix} 5/13 & 12/13 \\ 12/13 & -5/13 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} 29 \\ 2 \end{pmatrix}.$$

Note: Again, it is wise to check some points. For example, S sends $(13, 26)$ (the origin of C_2 in C_1-coordinates) to $(0, 0)$.
(4) In the following diagram, the distances $|AB|$ and $|AD|$ are both 1 unit. The line AB is perpendicular to AD, and a line parallel to AB is drawn through D. Using only a straightedge and compass, construct a line segment of length $\sqrt{6}$. Explain your construction.

The following diagram should explain one construction. There are many others.
(5) A diagram is given consisting of an isosceles triangle \(ABC \) and some marked points and line-segments. The angle \(\angle AEC \) is a right angle. Suppose the distance \(|AB| = |AC|\) is \(b \) and the distances \(|CD|, |DB|\) are \(f \) and \(g \) respectively. Express the distance \(e = |AD| \) in terms of \(b, f \) and \(g \).

First observe that \(f + |ED| = g - |ED| \), so

\[
|ED| = \frac{g - f}{2}.
\]

Second \(2|EB| = |CB| = g + f \), so

\[
|EB| = \frac{g + f}{2}.
\]

Now apply Pythagoras’ theorem to \(AEB \) to get

\[
|AE|^2 = b^2 - \left(\frac{g + f}{2} \right)^2
\]

and apply Pythagoras’ theorem to \(AED \) to get

\[
e^2 = |AE|^2 + \left(\frac{g - f}{2} \right)^2 = b^2 - \left(\frac{g + f}{2} \right)^2 + \left(\frac{g - f}{2} \right)^2 = b^2 - \frac{1}{4}(g^2 + 2fg + f^2) + \frac{1}{4}(g^2 - 2fg + f^2) = b^2 - fg.
\]

.oOo.