1. Fix a coordinate system for the Euclidean plane. Any isometric transformation of the plane may be written as
\[T(\vec{x}) = A\vec{x} + \vec{c} \]
where \(A \) is an orthogonal matrix and \(\vec{c} \) is a fixed vector. We say \(T \) is orientation preserving if any of the following conditions are satisfied:

- \(\det(A) = 1 \),
- \(A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \) for some angle \(\theta \),
- \(A \in SO_2 \).

We say \(T \) is a translation if \(A = I_2 \) (this agrees with a definition given in class).

(a) Suppose \(T \) is orientation preserving but not a translation. Show that 1 is not an eigenvalue of the matrix \(A \).

(b) Suppose \(T \) is orientation preserving but not a translation. Show there is a unique \(\vec{p} \in \mathbb{R}^2 \) such that \(T(\vec{p}) = \vec{p} \) (such an \(\vec{p} \) is called a fixed vector).

(c) Suppose \(T \) is orientation preserving but not a translation. Let \(\vec{p} \) denote the fixed vector from the previous part. Show that \(T(\vec{x}) = A(\vec{x} - \vec{p}) + \vec{p} \). Describe the transformation \(T \) geometrically.

(d) Suppose \(T \) is not orientation preserving. Show that \(T \) has either infinitely many fixed vectors, or none. Hint: find the eigenvalues of \(A \).

2. By constructing the angle \(2\pi/5 \) first, construct the angle \(2\pi/15 \) using only a straightedge and compass.

3. Let \(A, B, C \) be the vertices of a triangle, and let \(\Gamma \) be the unique circle passing through \(A, B, C \). We have seen \(\Gamma \) several times in this course, it is called the circumcircle of the triangle. Let \(O \) denote the centre of \(\Gamma \) (the circumcentre of the triangle). Draw a diameter of the circle from \(C \) through \(O \) to a point \(D \) also on \(\Gamma \). Use the Law of Sines to show that
\[|CD| = \frac{|BC|}{\sin|\angle BDC|}. \]

Hence, calculate \(|CD| \), the diameter of the circumcircle, in terms of \(|BC| \) and an angle of the triangle \(ABC \).
4. A regular pentagon is given inscribed in a circle. The circle has centre O. The distances $|AO|, |BO|, |CO|$ are all 1.

(a) We know

$$\sin \frac{2\pi}{5} = \sqrt{\frac{5 + \sqrt{5}}{8}}, \quad \cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}. \quad (1)$$

Calculate $\sin(3\pi/5)$ and $\cos(3\pi/5)$, giving your answers in the same kind of exact form as in (1).

(b) Calculate the side length $|AB|$ (again, give your answer in an exact form, do not use decimals).

(c) Calculate the area of the triangle $|ABC|$. Give your answer in an exact form and also give a decimal approximation.