1. Use the summation formulae for sines and cosines

\[
\sin(\phi + \theta) = \sin \phi \cos \theta + \cos \phi \sin \theta, \quad \cos(\phi + \theta) = \cos \phi \cos \theta - \sin \phi \sin \theta
\]

to express each of the following as a sum of powers of \(\sin \theta \) and \(\cos \theta \):

(a) \(\sin(2\theta) \),
(b) \(\sin(3\theta) \),
(c) \(\frac{2 \tan \theta}{1 + \tan^2 \theta} \).

2. In the following diagram

the triangle \(ABC \) is equilateral with side length 1, the angle \(\angle BAC \) is therefore \(\pi/3 \). The line \(AD \)
is a perpendicular bisector of \(BC \) and the curved line \(BC \) is the arc of the circle with centre \(A \) and radius 1. Call the arc \(\gamma \). The length of \(\gamma \) is \(\pi/3 \).

(a) Using the fact that a line segment is the shortest path between two points (you do not need to prove this), prove that \(3 < \pi \).

(b) It was asserted in class that the length of \(\gamma \) is bounded above by \(|BC| + 2|DE| \), i.e. \(\pi/3 \leq |BC| + 2|DE| \). The proof of this fact requires integration, so it is not covered in this course. We will assume it. Using this fact, give a proof that \(\pi < 4 \). (Hint: to calculate \(|DE| \), first calculate \(|AD| \).)
(c) Calculate $|BE|$.

(d) Use the result for the last part to obtain a better lower bound for π than 3.

3. The following identity may be proved by repeated use of the summation formula, among other methods:

$$\sin(5\theta) = \sin^5 \theta - 10 \sin^3 \theta \cos^2 \theta + 5 \sin \theta \cos^4 \theta$$

(a) Rewrite this in terms of $\sin \theta$ only (no $\cos \theta$ terms).

(b) Suppose θ is an angle such that $\sin(5\theta) = 0$ but $\sin \theta \neq 0$. Using the formula from the previous part, write down a polynomial equation of the form $a x^4 + b x^2 + c = 0$ satisfied by $\sin(\theta)$.

(c) Solve this polynomial equation for x (you should get 4 possible values for x).

(d) What is $\sin(2\pi/5)$? Give an exact answer (not a decimal approximation). Explain how you know this.

4. Suppose a triangle has sides of length 7, 5 and 3. Let θ denote the largest internal angle of this triangle. Use the law of cosines to calculate $\cos \theta$. What is θ?

5. Suppose ABC is a triangle with sides of the following lengths $|AB| = 10$, $|BC| = 17$ and $|CA| = 9$. What is $\cos \angle CAB$? What is the area of ABC?