In solving these problems, you may use any proposition in the Elements. Whenever I think you might need a proposition that we have not mentioned in class, I will say so. Please show, in your answers, which propositions from Euclid you are using, if any.

1. Suppose you are given a line segment of length ℓ. Explain how to use a straightedge & compass to construct a line segment of length $\ell/3$.

2. Let p, q be distinct points in the plane with coordinates (x_0, y_0) and (x_1, y_1). As usual, write \vec{p} for the vector starting at $(0,0)$ and ending at p, and similarly for other points. Prove that if r is some point with coordinates (x, y), then

$$\vec{r} = \vec{p} + t(\vec{q} - \vec{p})$$

if and only if

$$(x-x_0)(y_1-y_0) - (y-y_0)(x_1-x_0) = 0.$$

Show that $r = p$ and $r = q$ satisfy these equations. If L is the line passing through p, q, we call L the vector equation of L.

Added in version 2: a typographic error has been fixed here.

3. Let v be a vector. We call v a unit vector if $\|v\| = 1$. Suppose u and v are unit vectors. Show that $(u + v) \cdot (u - v) = 0$.

4. Suppose $(1,1)$ and $(4,5)$ are the coordinates of two vertices of a square. What are the coordinates of the other two vertices? (give all possible answers)

Added in version 2: a typographic error was fixed in this question. Also, one of the answers requires solving an unpleasant quadratic equation for x. We will accept answers that consist of a system of equations such that (x, y) are the coordinates of a vertex if and only if (x, y) is a solution to the system. That is, once you’ve found the equations, you do not need to solve them.

5. Let ABC be a right-angled triangle, with right angle at A. As in the proof of Proposition I.47, draw a line L from A meeting BC at right angles. Call the point where L and BC meet D. Prove that ABC and ABD are similar triangles. Use the equation

$$\frac{|AB|}{|BD|} = \frac{|BC|}{|AB|}$$

(and the similar equation for ABC and ACD) to obtain another proof of Pythagoras’ theorem.

6. Let ABC be a triangle. Let E, F, G be points lying on the line segments BC, CA and AB respectively in such a way that the lines AE, BF and CG meet at a single point, D (we say that the lines are coincident).

(a) Draw a diagram of the situation described above.
(b) Show that
\[
\frac{|AF|}{|FC|} = \frac{\text{area}(ADF)}{\text{area}(FDC)} = \frac{\text{area}(AFB)}{\text{area}(FBC)} = \frac{\text{area}(ADB)}{\text{area}(DBC)}.
\]
(c) Using the above, and the similar results for the other three sides, calculate
\[
\frac{|AF|}{|FC|} \cdot \frac{|CE|}{|EB|} \cdot \frac{|BG|}{|GA|}.
\]
7. Let \(ABCD\) be a square of side-length 1. Let \(P\) be a point on \(AB\). Extend \(BC\) so that the line \(DP\) meets the line \(BC\) at \(E\). Suppose the distance \(PB\) is \(1/5\). What is the distance \(DE\)?