Asymptotes

November 7, 2013

Limits at infinity: If a function $f(x)$ becomes arbitrarily close to a finite number L for all sufficiently large and positive x, then we write $\lim _{x} \rightarrow \infty f(x)=L$. In this case the line $y=L$ is a horizontal asymptote of f. The limit at $-\infty, \lim _{x \rightarrow-\infty} f(x)=M$ is defined analogously, and in this case the horizontal asymptote is $y=M$. The behaviour of f as $x \rightarrow \infty$ is called "End behaviour".
Polynomials: Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$. Then

- $\lim _{x \rightarrow \pm \infty} x^{n}=\infty$, if n is even
- $\lim _{x \rightarrow \infty} x^{n}=\infty, \lim _{x \rightarrow-\infty}=-\infty$, if n is odd
- $\lim _{x \rightarrow \pm \infty} 1 / x^{n}=0$
- $\lim _{x \rightarrow \pm \infty} p(x)=\infty$ or $-\infty$ depending on the degree of the polynomial and the sign of the leading coefficient a_{n}.

Rational functions: Let $f(x)=\frac{p(x)}{q(x)}$, where $p(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots a_{1} x+a_{0}, \quad q(x)=$ $b_{n}\left(x^{n}\right)+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}, a_{m} \neq 0, b_{n} \neq 0$. Then

- If $m<n$, then $\lim _{x \rightarrow \pm \infty} f(x)=0$ and $y=0$ is a horizontal asymptote of f.
- If $m=n$, then $\lim _{x \rightarrow \pm \infty} f(x)=a_{m} / b_{n}$, and $y=a_{m} / b_{n}$ is a horizontal asymptote of f.
- If $m>n$, then $\lim _{x \rightarrow \pm \infty}=\infty$ of $-\infty$ and f has no horizontal asymptote.
- Assuming that $f(x)$ is in reduced form (that is, $p(x)$ and $(q(x)$ share no common factors), vertical asymptotes occur at the zeros of q.

For Slant asymptotes, see the earlier notes, this will require carrying out long division.
Infinite limits at infinity: If $f(x)$ becomes arbitrarily large as $x \rightarrow \infty$, then we write $\lim _{x \rightarrow \infty} f(x)=-\infty$.

