Assignment 8

1. (i) Suppose f is a function defined on an interval I. If $f^{\prime}(x)$ is positive for all x in I, what can you conclude about the behaviour of f on I ?

Answer. f is strictly increasing on I.
(ii) Let f be defined on an interval I with an interior point c. If f has a local maximum at c, which of the following statements are true? (a) $f^{\prime}(c)>0$; (b) $f^{\prime}(c)<0$; (c) $f^{\prime}(c)=0$; (d) None of the above; (e) c is a critical point.
If f has a local maximum at c and $f^{\prime}(c)$ exists then what can you conclude about $f^{\prime}(c)$? State whether the following is true or false. If c is a critical point of f, then f must have a local maximum or local minimum at c. Justify your answer.

Answer. (d), (e). We choose (d) because f may not be differentiable at c, thus (a) (b) (c) are incorrect. (e) is correct by definition.

We conclude that $f^{\prime}(c)=0$, since c is assumed to be an interior point.
False. Counterexample: take $f(x)=x^{3}$ and look at $x=0$.
(iii) If $f^{\prime \prime}(x)>0$ on an interval, what can you conclude about $f^{\prime}(x)$ in that interval?

Answer. We conclude that $f^{\prime}(x)$ is strictly increasing, and f is concave up on that interval.
2. Consider the function

$$
f(x)=\frac{x^{3}+x^{2}-2 x-3}{x^{2}-3} .
$$

Its first and second derivatives are given by

$$
f^{\prime}(x)=\frac{\left(x^{2}-1\right)\left(x^{2}-6\right)}{\left(x^{2}-3\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+9\right)}{\left(x^{2}-3\right)} .
$$

(a) Find all x where $f(x)$ is defined and such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.

Solution. $f^{\prime}(x)=0$ precisely when $x= \pm 1$ or $x= \pm \sqrt{6} . f^{\prime}(x)$ does not exist when $x= \pm \sqrt{3}$. However, at these two points, $f(x)$ is not defined. Therefore we shall not consider these two points.
(b) Find all x where $f(x)$ is defined and such that $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist.

Solution. $f^{\prime \prime}(x)=0$ precisely when $x=0$. (Notice that $x^{2}+9$ is always positive.) $f^{\prime \prime}(x)$ does not exist when $x= \pm \sqrt{3}$. At these two points, $f(x)$ is not defined. Therefore again we shall not consider these two points.
(c) On which intervals is $f(x)$ increasing? On which intervals is $f(x)$ decreasing?

Solution. For the first part, it suffices to identify the intervals on which $f^{\prime}(x)$ is nonnegative. This is easy; these intervals are: $(-\infty,-\sqrt{6}],[-1,1],[\sqrt{6}, \infty)$. So on each of these intervals, f is increasing.

For the second part, one needs to identify the intervals on which $f^{\prime}(x)$ is non-positive. These intervals are: $[-\sqrt{6},-\sqrt{3}),(-\sqrt{3},-1],[1, \sqrt{3}),(\sqrt{3}, \sqrt{6}]$. Therefore on each of these intervals, f is decreasing.
Warning. It is incorrect to say the following:

$$
f \text { is decreasing on }[-\sqrt{6},-\sqrt{3}) \cup(-\sqrt{3},-1] \cup[1, \sqrt{3}) \cup(\sqrt{3}, \sqrt{6}] \text {. }
$$

To see this, just notice that, for example $f(1.5)<f(2)$, and both 1.5 and 2 lie in the above union of intervals. This can also be seen by looking at the graph of f (see the last page).
It is indeed true that f is increasing on $(-\infty,-\sqrt{6}] \cup[-1,1] \cup[\sqrt{6}, \infty)$. However, this is purely by coincidence.
Therefore, in exams, after you find the intervals, you should only say: f is increasing/decreasing on each of the intervals. Never say that f is increasing/decreasing on the union of the intervals.
(d) On which intervals is $f(x)$ concave up? On which intervals is $f(x)$ concave down?

Solution. $f(x)$ concaves up when $f^{\prime \prime}(x)>0$, and $f^{\prime \prime}(x)>0$ on $[0, \sqrt{3})$, and $(\sqrt{3}, \infty)$. So on each of these two intervals, $f(x)$ is concave up.
Similarly $f(x)$ concaves down on each of the following intervals: $(-\infty,-\sqrt{3}),(\sqrt{3}, 0]$.
The warning for part (c) still stands here. You cannot that f is concave up on $[0, \sqrt{3}) \cup$ $(\sqrt{3}, \infty)$.
(e) Find the coordinates of all local extrema and the inflection points. Be sure to indicate which is which.
Solution. Local maximum attained at: $x=-\sqrt{6}, x=1$.
Local minimum attained at: $x=-1, x=\sqrt{6}$.
Inflection point (where $f^{\prime \prime}(x)$ changes sign): $x=0$.
(f) Find any asymptotes of the function $f(x)$ and write their equations.

Solution. Two vertical asymptotes are easily observed: $x= \pm \sqrt{3}$.
Next we find the slanted asymptotes. Take limit:

$$
\lim _{x \rightarrow \pm \infty} f^{\prime}(x)=1
$$

This would be the slope of the "possible" asymptotes. Compute

$$
f(x)-x=1+\frac{x}{x^{2}-3} .
$$

Take limit: $\lim _{x \rightarrow \pm \infty}(f(x)-x)=1$. This would be the y intercept of the asymptote. Conclusion: the slanted asymptote of f is $y=x+1$.
(g) Draw a rough sketch of the graph of $f(x)$. Accurately place all critical points and inflection points, indicate all asymptotes, and make sure your graph shows where $f(x)$ is increasing and decreasing and correctly shows its concavity.

Black curve: $y=f(x)$.
Red lines: two vertical asymptotes, $x= \pm \sqrt{3}$.
Blue line: slanted asymptote, $y=x+1$.
Local max points: A, D.
Local mins: B, E.
Inflection point: C.

