Assignment 8

1. Consider the function

$$
f(x)=\frac{x^{3}+x^{2}-2 x-3}{x^{2}-3}
$$

Its first and second derivatives are given by

$$
f^{\prime}(x)=\frac{\left(x^{2}-1\right)\left(x^{2}-6\right)}{\left(x^{2}-3\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+9\right)^{2}}{\left(x^{2}-3\right)}
$$

(a) Find all x such that $f^{\prime}(x)=0$ of $f^{\prime \prime}(x)$ does not exist.
(b) Find all x where $f(x)$ is defined and such that $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist.
(c) On which intervals is $f(x)$ increasing? On which intervals is $f(x)$ decreasing?
(d) On which intervals is $f(x)$ concave up? On which intervals is $f(x)$ concave down?
(e) Find the coordinates of all local extrema and the inflection points, Be sure to indicate which is which.
(f) Find any asymptotes of the function $f(x)$ and write their equations.
(g) Draw a rough sketch of the graph of $f(x)$. Accurately place all critical points and inflection points, indicate all asymptotes, and make sure your graph shows where $f(x)$ is increasing and decreasing and correctly shows its concavity.

