Assignment 7

- 1. Consider a water tank shaped like an inverted right circular cone of height 1 metre and radius 1 m. Let h(t) denote the height of the water level of the tank in metres with time t in days. Water flows into the tank at a constant rate of 10 litres/day (1 litre= $10^{-3}m^3$.) Water evaporates from the tank at a rate of 0.01A in m^3/day , where A is the area in m^2 of the water surface.
 - (a) When h = 0.2m, how fast is the water level rising?

By similar triangle, the radius r of water surface at the water level h is: h. Therefore, the surface area $A = \pi h^2$.

The volume of the water is: $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi h^3$.

$$\therefore \frac{dV}{dt} = \pi h^2 \frac{dh}{dt}$$

Since water flows in in the rate of 10 L/day, and flows out in the rate of 0.01A m^3/day ,

$$\frac{dV}{dt} = (10 * 10^{-3} - 0.01A) = 0.01 \times (1 - \pi h^2) = \pi h^2 \frac{dh}{dt}$$

Therefore, at h = 0.2, $\frac{dh}{dt} = \frac{0.01 \times (1 - \pi \times 0.2^2)}{\pi \times 0.2^2} \approx 0.0696$. Hence the water level is increasing at the rate of 0.0696 m/day. (b) If the tank is left for a long time, will it overflow?

Solution: From part (a):
$$\frac{dh}{dt} = \frac{0.01(1 - \pi h^2)}{\pi h^2}$$
.
 $\frac{dh}{dt} \ge 0 \iff 1 - \pi h^2 \ge 0 \iff 0 \le h \le 1/\sqrt{\pi}$.

Therefore, the water will reach its equilibrium point at $h = 1/\sqrt{\pi} < 1$. Therefore, the tank will not overflow.

2. Liquid is being poured into a parabolic bowl at a constant rate of $60\pi \ cm^3/s$. The volume of the bowl is given by $V = \pi x^4/2$, where the equation of the parabola is $y = x^2$, and y is the height of the liquid in the bowl. Find the rate of increase of the height of the liquid in the bowl is 10 centimetres.

Solution:
$$y = x^2 \implies \frac{dy}{dt} = 2x\frac{dx}{dt}$$
.
 $V = \pi \frac{x^4}{2} \implies \frac{dV}{dt} = 2\pi x^3 \frac{dx}{dt}$
When the height is $10cm$, $10 = x^2$. Hence $x = \sqrt{10}$.
Therefore $\frac{dx}{dt} = \frac{\frac{dV}{dt}}{2\pi x^3} = \frac{60\pi}{2\pi(\sqrt{10})^3} = \frac{3\sqrt{10}}{10}$.
Therefore $\frac{dy}{dt} = 2 * \sqrt{10} * \frac{3\sqrt{10}}{10} = 6$.
Hence, the height of the liquid is increasing in the rate of $6cm/s$.

3. At 1:00 p.m. ship A is 25 km due north of ship B. If ship A is sailing west at a rate of 16km/h and ship B is sailing south at 20km/h, find the rate at which the distance between the two ships is changing at 1:30 p.m. (Be sure to draw a diagram).

4. Determine all the critical points for the function a) $g(t) = t^{2/3}(2t-1)$, b) $R(x) = \frac{x^2+1}{x^2-x-6}$.

Solution:
(a).
$$g'(t) = \frac{2}{3}t^{-\frac{1}{3}}(2t-1) + 2t^{\frac{2}{3}} = \frac{10t-2}{3t^{\frac{1}{3}}}$$
.
 $g'(t) = 0 \Rightarrow 10t-2 = 0 \Rightarrow t = \frac{1}{5}$
 $g(\frac{1}{5}) = -\frac{3}{10\sqrt[3]{2}}$
 $g'(t)$ Does Not Exist $\Rightarrow t = 0$.
 $g(0) = 0$
The critical points of $g(t)$ are: $(\frac{1}{5}, -\frac{3}{10\sqrt[3]{2}})$ and $(0,0)$
(b). $R'(x) = \frac{(2x)(x^2 - x - 6) - (x^2 + 1)(2x - 1)}{(x^2 - x - 6)^2} = \frac{-x^2 - 14x + 1}{[(x + 2)(x - 3)]^2}$
 $R'(x) = 0 \Rightarrow -x^2 - 14x + 1 = 0 \Rightarrow x = 5\sqrt{2} - 7$ or $x = -7 - 5\sqrt{2}$.
 $R(5\sqrt{2} - 7) = \frac{2}{5}(1 - \sqrt{2}); R(-7 - 5\sqrt{2}) = \frac{2}{5}(1 + \sqrt{2});$
 $R'(x)$ Does Not Exist $\Rightarrow (x + 2)(x - 3) = 0 \Rightarrow R(x)$ Does Not Exist.
The critical points of $R(x)$ are: $(5\sqrt{2} - 7, \frac{2}{5}(1 - \sqrt{2}))$ and $(-7 - 5\sqrt{2}, \frac{2}{5}(1 + \sqrt{2}))$

5. Suppose f is a function defined on an interval I. If f'(x) is positive for all x in I what can you conclude about the behaviour of f on I?

Solution: f is increasing in the interval I.

Let f be defined on an interval I with an interior point c. If f has a local maximum at c, which of the following statements are true? (a) f'(c) > 0, (b) f'(c) < 0. (c) f'(c) = 0. (d) None of the above. (e) c is a critical point.

Solution: (e) c is a critical point.

If f has a local maximum at c and f'(c) exists then what can you conclude about f'(c)?.

Solution: f'(c) = 0.

State whether the following is true or false. If c is a critical point of f, then f must have a local maximum or local minimum at c. Justify your answer.

Solution: False. Consider the function $f(x) = x^3$. $f'(x) = 2x^2$. Rightarrow f has a critical point at c = 0. However (0,0) is neither a local maximum nor a local minimum. Notice that, f'(x) > 0 for both x < 0 and x > 0. Therefore f(x) is increasing on both intervals $(-\infty, 0)$ and $(0, \infty)$. Hence f(0) is not a local maximum or a local minimum.

If f''(x) > 0 on an interval, what can you conclude about f'(x) in that interval?

Solution: If f''(x) > 0 on an interval, f'(x) is increasing in the interval.

Can you draw the graph of a function f(x) defined on [-1,6] that has no absolute minimum (if so, sketch it below). What does the extreme value theorem have to say about this situation.

Draw the graph of a function f(x) defined for all real values of x that is continuous and has both an absolute minimum and an absolute maximum.

