Problems in Continuity and Differentiability;
 Derivatives as rate of change; Deriving functions SOLUTION

1. Find the number c that makes

$$
f(x)= \begin{cases}\frac{x-c}{c+1}, & \text { if } x \leq 0 \\ x^{2}+c, & \text { if } x>0\end{cases}
$$

continuous for every x.
Solution:
Note that $f(x)$ is continuous for every $x \neq 0$.
$f(0)=\frac{0-c}{c+1}=\frac{-c}{c+1}$.
$\lim _{x \rightarrow 0^{+}} f(x)=0^{2}+c=c$.
$\lim _{x \rightarrow 0^{-}} f(x)=\frac{-c}{c+1}$.
Since $f(x)$ is continuous for every x, hence continuous for $x=0$.
$\Rightarrow f(0)=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$.
$\Rightarrow \frac{-c}{c+1}=c$.
$\Rightarrow c=0$ or $c=-2$.
2. Find the values of a and b so that

$$
f(x)= \begin{cases}a x+b, & \text { if } x<0 \\ 2 \sin (x)+3 \cos (x) & \text { if } x \geq 0\end{cases}
$$

is differentiable at $x=0$.
Solution:
First of all, $f(x)$ must be continuous at $x=0$. Hence $\lim _{x \rightarrow 0^{-}} f(x)=f(0)$.
$\Rightarrow b=2 \sin 0+3 \cos 0=3$.
Second, find $f^{\prime}(x)$:
$f^{\prime}(x)=\left\{\begin{array}{ll}a, & \text { if } x<0 \\ 2 \cos (x)-3 \sin (x) & \text { if } x \geq 0\end{array}\right.$.
Since $f(x)$ is differentiable at $x=0 . \lim _{x \rightarrow 0^{-}} f^{\prime}(x)=f^{\prime}(0)$.
$\Rightarrow a=2 \cos 0-3 \sin 0=2$.
Therefore $a=2, b=3$.
3. The price p (in dollars) and the demand q (in thousands of units) of a commodity satisfy the demand equation $6 p+q+q p=94$. Find the rate at which demand is changing when $p=9, q=4$, and the price is rising at the rate of $\$ 2$ per week.

Solution:
From demand equation, we can get: $q=\frac{94-6 p}{1+p}$.
To find the rate of change of demand, we need to find the derivative: $q^{\prime}(p)=$ $\frac{-100}{(p+1)^{2}}$.
At $p=9, q^{\prime}(9)=\frac{-100}{100}=-1$.
Since: $\frac{\Delta p}{\Delta q}=q^{\prime}(p)$.
The Rate of Change of Demand at $(p=9, q=4)=q^{\prime}(9) *$ The Rate of Change of Quantity.
When price is rising at the rate of 2 , the demand should be changing at the rate of $-1 \cdot 2=-2$. Hence demand is decreasing at the rate of 2 .
4. When EZ Electronic Company sells surge protectors at $\$ 50$ a piece, they produce and sell 3000 of them per month. For every $\$ 1$ increase in price, the number of surge protectors they sell decreases by 15 . Find the linear demand function $q=D(p)$, where p is a price of a unit and q is the number of surge protectors made and sold.

Solution:
Notice that the demand function is linear, therefore $q=D(p)=m p+b$.
When price increases by $\$ 1$, the demand decreases by 15 , so $m=-15$.
Therefore $q=-15 p+b$. Since the point $(p, q)=(50,3000)$ must lie on this line, $3000=-15 \cdot 50+b . \Rightarrow b=3750$.

The demand function is: $q=-15 p+3750$.
5. Find the derivatives of the following functions using differential rules(product rule, quotient rule, etc.). DO NOT SIMPLIFY
(a) $\sqrt{\frac{\cos 2 x}{\sin x}}$
(b) $(\sqrt{x}+x+2)\left((x+1)^{3}-2\right)$
(c) $y=\frac{e^{x^{2}-1}}{\sin \left(x^{2}\right)}$.

Solution:
(a) $\left(\sqrt{\frac{\cos 2 x}{\sin x}}\right)^{\prime}=\frac{1}{2 \sqrt{\left(\frac{\cos 2 x}{\sin x}\right)}} \frac{-\sin 2 x \cdot 2 \cdot \sin x-\cos 2 x \cdot \cos x}{(\sin x)^{2}}$
(b) $\left[(\sqrt{x}+x+2)\left((x+1)^{3}-2\right)\right]^{\prime}=\left(\frac{1}{2 \sqrt{x}}+1\right)\left((x+1)^{3}-2\right)+(\sqrt{x}+x+2) \cdot 3 \cdot(x+1)^{2}$
(c) $y^{\prime}=\frac{e^{x^{2}-1}(2 x) \sin \left(x^{2}\right)-e^{x^{2}-1} \cos \left(x^{2}\right) \cdot 2 x}{\sin ^{2}\left(x^{2}\right)}$.
6. Use the definition of derivatives to find $f^{\prime}(x)$ for $f(x)=\sqrt{x^{2}-1}$. NO CREDIT WILL BE GIVEN FOR USING OTHER METHOD.

Solution:

By the definition of derivatives,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}-1}-\sqrt{x^{2}-1}}{h} \\
= & \lim _{h \rightarrow 0} \frac{\left[\sqrt{(x+h)^{2}-1}-\sqrt{x^{2}-1}\right] \cdot\left[\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}\right]}{h\left[\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}\right]} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-1-x^{2}+1}{h\left[\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}\right]} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h\left[\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}\right]} \\
& =\lim _{h \rightarrow 0} \frac{2 x+h}{\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}} \\
& =\frac{2 x}{2 \sqrt{x^{2}-1}}
\end{aligned}
$$

