> Problems in Continuity and Differentiability; Derivatives as rate of change; Deriving functions

1. Find the number c that makes

$$
f(x)= \begin{cases}\frac{x-c}{c+1}, & \text { if } x \leq 0 \\ x^{2}+c, & \text { if } x>0\end{cases}
$$

continuous for every x.
2. Find the values of a and b so that

$$
f(x)= \begin{cases}a x+b, & \text { if } x<0 \\ 2 \sin (x)+3 \cos (x) & \text { if } x \geq 0\end{cases}
$$

is differentiable at $x=0$.
3. The price p (in dollars) and the demand q (in thousands of units) of a commodity satisfy the demand equation $6 p+q+q p=94$. Find the rate at which demand is changing when $p=9, q=4$, and the price is rising at the rate of 2 per week.
4. When EZ Electronic Company sells surge protectors at $\$ 50$ a piece, they produce and sell 3000 of them per month. For every $\$ 1$ increase in price, the number of surge protectors they sell decreases by 15 . Find the linear demand function $q=D(p)$, where p is a price of a unit and q is the number of surge protectors made and sold. [Hint: The point $(p, q)=(50,3000)$ must lie on this line.]
5. Find the derivatives of the following functions using differential rules(product rule, quotient rule, etc.). DO NOT SIMPLIFY
(a) $\sqrt{\frac{\cos 2 x}{\sin x}}$
(b) $(\sqrt{x}+x+2)\left((x+1)^{3}-2\right)$
(c) $y=\frac{e^{x^{2}-1}}{\sin \left(x^{2}\right)}$.
6. Use the definition of derivatives to find $f^{\prime}(x)$ for $f(x)=\sqrt{x^{2}-1}$. NO CREDIT WILL BE GIVEN FOR USING OTHER METHOD.

