Problems in Finding Derivatives and Tangent Lines SOLUTION

1. Use the definition of the derivative to compute $f^{\prime}(1)$ for $f(x)=\frac{13}{x+7}$. NO CREDIT will be given for any other method.

Solution:

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\frac{13}{1+h+7}-\frac{13}{8}}{h} \\
= & \lim _{h \rightarrow 0} \frac{13 \cdot 8-13(8+h)}{8 h(8+h)} \\
& =\lim _{h \rightarrow 0} \frac{-13 h}{8 h(8+h)} \\
& =\lim _{h \rightarrow 0} \frac{-13}{8(8+h)} \\
& =\frac{-13}{64}
\end{aligned}
$$

2. Compute the derivatives of the following functions. DO NOT SIMPLIFY.
(a) $f(x)=\left(\sin x+x^{2}+1\right)\left(2 x^{3}+x\right)^{2}$
(b) $g(x)=\frac{x^{2}+12 x+e^{3}}{x+e^{x}}$
(c) $h(t)=e^{3 t}\left(t^{2}+x^{2}\right)$

Solution:
(a) $f^{\prime}(x)=(\cos x+2 x)\left(2 x^{3}+x\right)^{2}+2\left(\sin x+x^{2}+1\right)\left(2 x^{3}+x\right)\left(6 x^{2}+1\right)$
(b) $g^{\prime}(x)=\frac{(2 x+12)\left(x+e^{x}\right)-\left(x^{2}+12 x+e^{3}\right)\left(1+e^{x}\right)}{\left(x+e^{x}\right)^{2}}$
(c) $h^{\prime}(t)=3 e^{3 t}\left(t^{2}+x^{2}\right)+e^{3 t}(2 t)$
3. Find $h^{\prime}(1)$ where $h(x)=\frac{x g(x)+7}{f(x)}, f^{\prime}(1)=4, g^{\prime}(1)=-2$, and $f(1)=1$, $g(1)=1$. EXPREE YOUR ANSWER AS AN INTEGER.

Solution:

$$
\begin{aligned}
& h^{\prime}(x)=\frac{f(x)(x g(x)+7)^{\prime}-(x g(x)+7) f^{\prime}(x)}{[f(x)]^{2}} \\
& =\frac{f(x)\left[g(x)+x g^{\prime}(x)\right]-[x g(x)+7] f^{\prime}(x)}{[f(x)]^{2}} \\
& \therefore h^{\prime}(1)=\frac{f(1)\left[g(1)+g^{\prime}(1)\right]-[g(1)+7] f^{\prime}(1)}{[f(1)]^{2}} \\
& \quad=\frac{1[1+(-2)]-[1+7] 4}{[1]^{2}} \\
& \quad=-33
\end{aligned}
$$

4. Find the equation of the tangent line to $y=f(x)=\frac{x+3}{2 x+1}$ at the point corresponding to $x=0$.

Solution:
The slope of the tangent line at $x=0$ is $f^{\prime}(0)$.
$f^{\prime}(x)=\frac{(2 x+1)-2(x+3)}{(2 x+1)^{2}}$.
$\therefore f^{\prime}(0)=\frac{1-6}{1}=-5$.
Therefore, the equation of the tangent line is: $y=-5 x+b$.
At $x=0, y=f(0)=\frac{3}{1}=3$. Therefore $3=0+b$, i.e. $b=3$.
The equation of the tangent line is: $y=-5 x+3$.
5. Find the y-intercept of the tangent line to the curve $y=x^{3}+1$ at the point $(2,9)$.

Solution:
$y^{\prime}(x)=3 x^{2}$.
At the point $(2,9), y^{\prime}(2)=3 \cdot 2^{2}=12$.
Therefore the equation of the tangent line is: $y=12 x+b$.
Hence, the y-intercept $b=y-12 x=9-12 \cdot 2=-15$.
6. Find the x and y coordinates of the point on the graph of $y=\frac{1}{4}(2 x+1)^{2}$ where the tangent line is parallel to the line $y-3 x=1$.

Solution:

The slope of the tangent line of $y=\frac{1}{4}(2 x+1)^{2}$ is:

$$
y^{\prime}(x)=\frac{1}{4} \cdot 2(2 x+1) \cdot 2=2 x+1
$$

Since the tangent line is parallel to the line $y-3 x=1$, the tangent line has a slope equal to 3 .
Therefore $y^{\prime}(x)=2 x+1=3 . \Longrightarrow x=1$.
$y=\frac{1}{4}(2 \cdot 1+1)^{2}=\frac{9}{4}$.
The x, y coordinates are $x=1, y=\frac{9}{4}$.

