Assignment 10

November 29, 2013

1. Use linear approximation and quadratic approximation to approximate $63^{1/3}$.

Answer. Notice that $64^{1/3} = 4$. We use the function $f(x) = x^{1/3}$ and choose the center a = 64. Then by linear approximation,

$$63^{1/3} = f(63) \approx f(64) + f'(64)(63 - 64) = 4 - \frac{1}{48} = 2.97917...$$

By quadratic approximation,

$$63^{1/3} = f(63) \approx f(64) + f'(64)(-1) + f''(64)(-1)^2/2 = 2.979058...$$

Remark. The true value of $63^{1/3}$ is 3.979057...

2. Find the linear approximation to $y = \sin x$ centered at x = 0.

Answer. We have $(\sin x)' = \cos x$; at the center, $\cos 0 = 1$. Hence the linear approximation of $\sin x$ centered at 0 is

$$\sin x \approx \sin 0 + 1 \cdot (x - 0) = x.$$

3. Find $\sqrt{9.02}$ approximately using linear approximation.

Answer. Use the function $f(x) = \sqrt{x}$, and choose the center a = 9. By linear approximation, we have

$$\sqrt{9.02} = f(9.02) \approx f(9) + f'(9)(9.02 - 9) = 3 + (1/6) \times 0.02 = 3 + \frac{1}{300}.$$

4. For a function f(x) we know that f(3) = 2 and f'(3) = -3. Give an estimate for f(2.91).

Answer. We use linear approximation to get

$$f(2.91) \approx f(3) + f'(3)(2.91 - 3) = 2 + 3 \times 0.09 = 2.27.$$

- 5. The function f(x) has the following properties: f(5) = 2, f'(5) = 0.6, f''(5) = -0.4.
 - (a) Find the tangent line to y = f(x) at the point (5,2).
 - (b) Use (a) to estimate f(5.2).

• (c) If f is known to be concave down, could your estimate in (b) be greater than the actual value of f(5.2)? Justify your answer.

Answer. (a) The slope of the tangent line is f'(5) = 0.6. The tangent line is given by y = 0.6(x - 5) + 2, or equivalently, y = 0.6x - 1.

(b) We have $f(5.2) \approx 0.6 \times 5.2 - 1 = 2.12$.

(c) The error term is given by $R_1(x) = f''(\xi)(x-a)^2/2$. f(x) being concave down means that f'' < 0, thus $R_1(x) < 0$. So the approximated value is greater than the actual value.

6. What is the maximum error in approximating $\ln(1-x)$ centered at 0 by the quadratic polynomial $p_2(x)$ in the interval [-1/2, 1/2].

Answer. The absolute error is given by $|R_2(x)| = |f'''(\xi)x^3|/6$. The third derivative of $\ln(1-x)$ is $2(x-1)^{-3}$, so $|R_2(x)|$ becomes

$$|R_2(x)| = \frac{1}{3} \cdot \frac{1}{|\xi - 1|^3} |x|^3.$$

Since $x \in [-1/2, 1/2]$, we have $|x|^3 \le 1/8$. Now ξ lies between the center 0 and x, but in anyway, ξ also lies in [-1/2, 1/2], and so it is easy to see that $1/|\xi - 1|^3 \le 8$. Therefore

$$|R_2(x)| \le \frac{1}{3} \times 8 \times \frac{1}{8} = \frac{1}{3}.$$

Remark. This upper bound is not sharp. One can improve it to

$$|R_2(x)| \le \ln(3/2) - 5/8 = 0.21953...$$