Assignment 10

November 29, 2013

1. Use linear approximation and quadratic approximation to approximate $63^{1 / 3}$.

Answer. Notice that $64^{1 / 3}=4$. We use the function $f(x)=x^{1 / 3}$ and choose the center $a=64$. Then by linear approximation,

$$
63^{1 / 3}=f(63) \approx f(64)+f^{\prime}(64)(63-64)=4-\frac{1}{48}=2.97917 \ldots
$$

By quadratic approximation,

$$
63^{1 / 3}=f(63) \approx f(64)+f^{\prime}(64)(-1)+f^{\prime \prime}(64)(-1)^{2} / 2=2.979058 \ldots
$$

Remark. The true value of $63^{1 / 3}$ is $3.979057 \ldots$
2. Find the linear approximation to $y=\sin x$ centered at $x=0$.

Answer. We have $(\sin x)^{\prime}=\cos x$; at the center, $\cos 0=1$. Hence the linear approximation of $\sin x$ centered at 0 is

$$
\sin x \approx \sin 0+1 \cdot(x-0)=x
$$

3. Find $\sqrt{9.02}$ approximately using linear approximation.

Answer. Use the function $f(x)=\sqrt{x}$, and choose the center $a=9$. By linear approximation, we have

$$
\sqrt{9.02}=f(9.02) \approx f(9)+f^{\prime}(9)(9.02-9)=3+(1 / 6) \times 0.02=3+\frac{1}{300} .
$$

4. For a function $f(x)$ we know that $f(3)=2$ and $f^{\prime}(3)=-3$. Give an estimate for $f(2.91)$.

Answer. We use linear approximation to get

$$
f(2.91) \approx f(3)+f^{\prime}(3)(2.91-3)=2+3 \times 0.09=2.27
$$

5. The function $f(x)$ has the following properties: $f(5)=2, f^{\prime}(5)=0.6, f^{\prime \prime}(5)=-0.4$.

- (a) Find the tangent line to $y=f(x)$ at the point $(5,2)$.
- (b) Use (a) to estimate $f(5.2)$.
- (c) If f is known to be concave down, could your estimate in (b) be greater than the actual value of $f(5.2)$? Justify your answer.

Answer. (a) The slope of the tangent line is $f^{\prime}(5)=0.6$. The tangent line is given by $y=0.6(x-5)+2$, or equivalently, $y=0.6 x-1$.
(b) We have $f(5.2) \approx 0.6 \times 5.2-1=2.12$.
(c) The error term is given by $R_{1}(x)=f^{\prime \prime}(\xi)(x-a)^{2} / 2 . f(x)$ being concave down means that $f^{\prime \prime}<0$, thus $R_{1}(x)<0$. So the approximated value is greater than the actual value.
6. What is the maximum error in approximating $\ln (1-x)$ centered at 0 by the quadratic polynomial $p_{2}(x)$ in the interval $[-1 / 2,1 / 2]$.

Answer. The absolute error is given by $\left|R_{2}(x)\right|=\left|f^{\prime \prime \prime}(\xi) x^{3}\right| / 6$. The third derivative of $\ln (1-x)$ is $2(x-1)^{-3}$, so $\left|R_{2}(x)\right|$ becomes

$$
\left|R_{2}(x)\right|=\frac{1}{3} \cdot \frac{1}{|\xi-1|^{3}}|x|^{3}
$$

Since $x \in[-1 / 2,1 / 2]$, we have $|x|^{3} \leq 1 / 8$. Now ξ lies between the center 0 and x, but in anyway, ξ also lies in $[-1 / 2,1 / 2]$, and so it is easy to see that $1 /|\xi-1|^{3} \leq 8$. Therefore

$$
\left|R_{2}(x)\right| \leq \frac{1}{3} \times 8 \times \frac{1}{8}=\frac{1}{3} .
$$

Remark. This upper bound is not sharp. One can improve it to

$$
\left|R_{2}(x)\right| \leq \ln (3 / 2)-5 / 8=0.21953 \ldots
$$

