Assignment 9

1. A small manufacturer wholesales leather jackets to a number of specialty stores. The monthly demand from these stores for the jackets is described by the demand equation $p=400-50 q$. Here p is the wholesale price, in dollars per jacket, and q is the monthly demand, in thousands of jackets. Note that the demand equation makes no sense if $q \geq 8$. The manufacturer's marginal cost is given by the equation

$$
d C / d q=\frac{800}{q+5} .
$$

Determine the number of jackets that must be sold per month to maximize monthly profit. You do not need to justify that your answer provides the maximal profit.

Solution:

Constraint: $0 \leq q \leq 8$
Given: $p=400-50 q ; C(q)=$ Cost function; $\frac{d C}{d q}=\frac{800}{q+5}$
Goal: Find q so that $P(q)$ is maximal, where P is the profit function.

$$
\begin{aligned}
P(q) & =R(q)-C(q) \\
& =p q-C(q) \\
& =400 q-50 q^{2}-C(q) \\
P^{\prime}(q) & =400-100 q-C^{\prime}(q) \\
& =400-100 q-\frac{800}{q+5}
\end{aligned}
$$

Maximize profit by finding q such that $P^{\prime}(q)=0$.

$$
\begin{aligned}
P^{\prime}(q)=400-100 q-\frac{800}{q+5}=0 & \Rightarrow 400 q+2000-100 q^{2}-500 q-800=0 \\
& \Rightarrow 100 q^{2}+100 q-1200=0 \\
& \Rightarrow q^{2}+q-12=0 \\
& \Rightarrow(q+4)(q-3)=0
\end{aligned}
$$

The constraint is satisfied by $q=3$. Hence profit is maximized when 3 jackets are sold per month.
2. Find two positive real numbers m and n whose product is 50 and whose sum is as small as possible.

Solution:

Constraint: $m>0 ; n>0 ; m n=50$
Goal: Minimize $m+n$.
Let $M=m+n$.

$$
\begin{aligned}
M(m) & =m+\frac{50}{m} \\
& =\frac{m^{2}+50}{m}
\end{aligned}
$$

Minimize $M(m)$ by finding m such that $M^{\prime}(m)=0$.

$$
\begin{aligned}
M^{\prime}(m)=1-\frac{50}{m^{2}}=0 & \Rightarrow m^{2}-50=0 \\
& \Rightarrow m^{2}=50
\end{aligned}
$$

But m is positive so $m=\sqrt{50}=5 \sqrt{2}$. Then

$$
n=\frac{50}{5 \sqrt{2}}=\frac{10}{\sqrt{2}}=\frac{2 \times 5}{\sqrt{2}}=5 \sqrt{2} .
$$

So $m=n=5 \sqrt{2}$.
3. You want to build a rectangular pen with three parallel partitions using 500 feet of fencing. What dimensions will maximize the total area of the pen?

Solution:

Constraint: $2 a+5 b=500 \mathrm{ft}$. Since there are 5 lengths of b and 500 ft of fencing, $0 \leq b \leq 100 ; a=\frac{500-5 b}{2}$ or $0 \leq a \leq 250$.
Area: $a b \mathrm{ft}^{2}$.
Goal: Maximize area.

$$
\begin{gathered}
2 a+5 b=500 \Rightarrow 5 b=500-2 a \Rightarrow b=100-\frac{2}{5} a \\
\text { Area }=a b=a\left(100-\frac{2}{5} a\right) \\
A(a)=100 a-\frac{2}{5} a^{2}
\end{gathered}
$$

Maximize area: $A^{\prime}(a)=0$.

$$
\begin{aligned}
A^{\prime}(a)=100-\frac{4}{5} a=0 & \Rightarrow 100=\frac{4}{5} a \\
& \Rightarrow 4 a=500 \\
& \Rightarrow a=125 \mathrm{ft}
\end{aligned}
$$

and so

$$
b=100-\left(\frac{2}{5}\right)(125)=100-50=50 \mathrm{ft} .
$$

So $a=125 \mathrm{ft}$ and $b=50 \mathrm{ft}$ works.
Maximizes area (check): When $a=125$,

$$
A^{\prime \prime}(a)=-\frac{4}{5}<0
$$

Hence area is maximized.
4. A container in the shape of a right circular cylinder with no top has a surface area of $3 \pi m^{2}$. What height h and base radius r will maximize the volume of the cylinder?

Solution:

Constraint: Base of box is a circle and only $3 \pi \mathrm{~m}^{2}$ of material is available, so $0 \leq r \leq$ $\sqrt{3}$.
Goal: Maximize volume.
Total surface area $=$ Area of base + Area of curved body $=\pi r^{2}+2 \pi r h$.

$$
\begin{aligned}
& A=3 \pi, \text { so } \\
& \qquad \begin{aligned}
3 \pi=\pi r^{2}+(2 \pi r) h & \Rightarrow 2 \pi r h=3 \pi-\pi r^{2} \\
& \Rightarrow h=\frac{3 \pi-\pi r^{2}}{2 \pi r}
\end{aligned}
\end{aligned}
$$

Volume $=V=\pi r^{2} h$.

$$
\begin{gathered}
V=V(r)=\pi r^{2}\left(\frac{3 \pi-\pi r^{2}}{2 \pi r}\right)=\frac{3}{2} \pi r-\frac{1}{2} \pi r^{3} \\
V^{\prime}(r)=\frac{3}{2} \pi-\frac{3}{2} \pi r^{2}=\frac{3}{2} \pi(1-r)(1+r)
\end{gathered}
$$

Maximize volume: Letting $V^{\prime}(r)=0$, we obtain $r= \pm 1$. Radius cannot be negative so $r=1$.
It follows that

$$
h=\frac{3 \pi-\pi r^{2}}{2 \pi r}=1
$$

given $r=1$.
Second derivative test: $V^{\prime \prime}(r)=-3 \pi r$ so for $r=1, V^{\prime \prime}(1)=-3 \pi<0$.
Volume is maximized when $r=h=1 \mathrm{~m}$.
5. Suppose you own a tour bus and you book groups of 20 to 70 people for a day tour. The cost per person is $\$ 30$ minus $\$ 0.25$ for every ticket sold. If gas and other miscellaneous costs are $\$ 200$, how many tickets should you sell to maximize your profit? Treat the number of tickets as a nonnegative real number.

Solution:

Define q as the number of tickets sold. Constraint: $20 \leq q \leq 70$.
Revenue $R(q)=q(30-0.25 q)$

$$
=-0.25 q^{2}+30 q
$$

$$
\begin{aligned}
\text { Cost } C(q) & =\text { fixed cost } \\
& =200 \\
\text { Profit } P(q) & =R(q)-C(q) \\
& =-0.25 q^{2}+30 q-200
\end{aligned}
$$

Maximize $P(q): P^{\prime}(q)=0$.

$$
\begin{aligned}
P^{\prime}(q)=-0.5 q+30=0 & \Rightarrow 30=0.5 q \\
& \Rightarrow q=\frac{300}{5}=60
\end{aligned}
$$

Second derivative test: $P^{\prime \prime}(q)=-0.5<0$ so $q=60$ is a local maximum. $q=60$ is a unique critical point so it is also the absolute maximum.

