Polygon Dissections and Standard Young Tableaux

Richard P. Stanley\(^1\)
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
rstan@math.mit.edu

ABSTRACT

A simple bijection is given between dissections of a convex \((n+2)\)-gon with \(d\) diagonals not intersecting in their interiors and standard Young tableaux of shape \((d + 1, d + 1, 1^{n-1-d})\).

\(^1\) Partially supported by National Science Foundation grant \#DMS-9206374.
For $0 \leq d \leq n-1$, let $f(n,d)$ be the number of ways to draw d diagonals in a convex $(n+2)$-gon, such that no two diagonals intersect in their interior. For instance, $f(n,n-1)$ is just the Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$. A result going back to Kirkman [3], Prouhet [4], and Cayley [1] (with Cayley giving the first complete proof) asserts that

$$f(n,d) = \frac{1}{n+d+2} \binom{n+d+2}{d+1} \binom{n-1}{d}. \quad (1)$$

K. O'Hara and A. Zelevinsky observed (unpublished) that the right-hand side of (1) is just the number of standard Young tableaux (as defined, e.g., in [5, p. 66]) of shape $(d+1, d+1, 1^{n-1-d})$, where 1^{n-1-d} denotes a sequence of $n-1-d$ 1's. It is natural to ask for a bijection between the polygon dissections and the standard Young tableaux. If one is willing to accept the formula for the number of standard Young tableaux of a fixed shape (either in the original form due to MacMahon or the hook-length formula of Frame-Robinson-Thrall), then one obtains a simple proof of equation (1). In this note we give a simple bijection of the desired type.

First we recall that there is a well-known bijection [2] between dissections D of an $(n+2)$-gon with d diagonals and integer sequences $\psi(D) = (a_1, a_2, \ldots, a_{n+d+1})$ such that (a) either $a_i = -1$ or $a_i \geq 1$, (b) exactly n terms are equal to -1, (c) $a_1 + a_2 + \cdots + a_i \geq 0$ for all i, and (d) $a_1 + a_2 + \cdots + a_{n+d+1} = 0$. This bijection may be defined recursively as follows. Fix an edge e of the dissected polygon D. When we remove e from D, we obtain a sequence of dissected polygons D_1, D_2, \ldots, D_k (where $k+1$ is the number of sides of the region of D to which e belongs), arranged in clockwise order, with D_i and D_{i+1} intersecting at a single vertex. If D_i consists of a single edge, then define $\psi(D_i) = -1$, and set recursively $\psi(D) = (k-1, \psi(D_1)^*, \psi(D_2)^*, \ldots, \psi(D_{k-1})^*, \psi(D_k))$, where $\psi(D_i)^*$ denotes $\psi(D_i)$ with a -1 appended at the end.

Given a sequence $(a_1, a_2, \ldots, a_{n+d+1})$ as above, define a standard Young tableau T of shape $(d+1, d+1, 1^{n-1-d})$ as follows. We insert the elements $1, 2, \ldots, n+d+1$ successively into T. Once an element is inserted, it remains in place. (There is no "bumpling" as in the Robinson-Schensted correspondence.) Suppose that the positive a_i's are given by $b_1, b_2, \ldots, b_{k+1}$, in that order. The insertion is then defined by the following three rules:

2
• If \(a_i > 0 \), then insert \(i \) at the end of the first row. (We write our tableaux in “English” style, so the longest row is at the top.)

• If \(a_i = -1 \) and the number of \(-1\)’s preceding \(a_i \) is given by \(b_1 + b_2 + \cdots + b_j \) for some \(j \geq 0 \), then insert \(i \) at the end of the second row.

• If \(a_i = -1 \) and the number of \(-1\)’s preceding \(a_i \) in not of the form \(b_1 + b_2 + \cdots + b_j \), then insert \(i \) at the bottom of the first column.

It is an easy exercise to check that the above procedure yields the desired bijection.

Example. Let the sequence corresponding to a dissection \(D \) (with \(n = 14 \), \(d = 6 \)) be given by

\[(4, 2, -1, 1, -1, -1, 3, -1, -1, 1, -1, -1, -1, -1, -1, -1, 2, -1, -1).\]

We have \((b_1, \ldots, b_7) = (4, 2, 1, 3, 1, 1, 2).\) We have printed in boldface those \(-1\)’s that are preceded by \(b_1 + \cdots + b_j \) \(-1\)’s for some \(j \). The corresponding standard tableau \(\psi(D) \) is given by

\[
\begin{array}{cccccccc}
1 & 2 & 4 & 7 & 10 & 11 & 18 \\
3 & 9 & 13 & 14 & 17 & 19 & 20 \\
5 \\
6 \\
8 \\
12 \\
15 \\
16 \\
21 \\
\end{array}
\]

References

