Minimal spanning trees, Travelling salespeople, and together

Steph van Willigenburg
Math 442-201 2019WT2

26 March 2020
Minimal spanning tree (MST)

Definition

Let G be a connected weighted graph. A spanning tree of G with smallest sum of edge weights is called a minimal spanning tree of G.

Example

$G =$

The minimal spanning tree of G is
Kruskal’s algorithm for MST

Given a connected weighted graph G.

1. Write down the vertices of G. Add an edge of lowest weight.
2. Continue to add edges of lowest weight, never making a cycle.
3. Stop when all vertices are connected.

Note: Break ties arbitrarily.

Example
Travelling Salesperson Problem (TSP)

Given a network of n connected cities, to visit once and only once and then return home, what is the minimum distance to travel?

OR

Given a weighted complete graph K_n, which Hamiltonian cycle has the sum of edge weights being minimal?

Note: No algorithm exists that does better than check all cycles.

Example

A minimal weight of is given by
Computing a lower bound: TSP meets MST

Given a weighted complete graph, K_n.

1. Choose a vertex v and delete it.
2. Compute an MST for $K_{n-1} = K_n - v$.
3. Note the two smallest edge weights on edges coming from v.
4. Sum the edge weights found in 2 and 3.

Example 1 + 2: Delete D and get MST

3: Two smallest weights coming from D:

4: Minimal weight \geq
Why does this work?

If we take any Hamiltonian cycle in a weighted K_n and delete a vertex v, then we are left with a spanning tree of $K_{n-1} = K_n - v$.

So

\[
\begin{align*}
(Sum \ of \ weights \ in \ MST \ for \ K_{n-1}) & \\
+ \ (2 \ smallest \ edge \ weights \ meeting \ at \ v) & \\
\leq & \\
(Sum \ of \ weights \ in \ span. \ tree \ for \ K_{n-1}, \ part \ of \ TSP \ solution) & \\
+ \ (2 \ edge \ weights \ meeting \ at \ v, \ part \ of \ TSP \ solution).
\end{align*}
\]
Definition

A directed graph (or digraph) \(D \) has vertices \(V(D) \) and directed arcs \(A(D) \) connecting the vertices. It is simple if

- finite vertices
- no arc joining vertex to itself
- not multiple arcs going in same direction.

Note: Take directions from arcs in \(D \) gives underlying graph \(U(D) \). Add directions to edges in graph \(G \) gives orientation of \(G, D_G \).

Example

\[D = \quad \text{is a simple digraph with} \quad U(D) = \]
Bonus - directed graphs

Many concepts are similar to graphs, e.g. a directed path/cycle is a path/cycle whose directions you follow.

Definition

Let D be a digraph. The number of arc ends meeting at a vertex v is called the **degree**, $\text{deg}(v)$. Arcs coming in is the **indegree**, $\text{indeg}(v)$. Arcs going out is the **outdegree**, $\text{outdeg}(v)$.

Note: $\text{indeg}(v) = 0$ is a **source**, $\text{outdeg}(v) = 0$ is a **sink**.

Example

$$D = \quad \text{has } \text{indeg}(v) = \quad , \quad \text{outdeg}(v) = \quad , \quad \text{deg}(v) = \quad$$
In summary

- Minimal spanning tree
- Kruskal’s algorithm
- Travelling salesperson problem
- Applying minimal spanning trees to find a lower bound for the travelling salesperson problem.
- Bonus - primer on directed graphs

Thanks! See you next time!