SEARCHING TREES, WEIGHTED GRAPHS, AND
SHORTEST PATHS

Steph van Willigenburg
Math 442-201 2019WT2

24 March 2020
Spanning Trees of the Complete Graph

Last time:

Theorem

There are \(n^{(n-2)} \) non-isomorphic labelled trees with \(n \geq 2 \) vertices.

This time:

Corollary

\[\tau(K_n) = n^{n-2} \]
Proof of $\tau(K_n) = n^{n-2}$

Label vertices of K_n with $1, 2, \ldots, n$, and T be set of all non-iso labelled trees, n vertices.

1. Each spanning tree of K_n is now a labelled tree so

 $\tau(K_n) \leq |T|.$

2. Each $T \in T$ is iso to a spanning tree of K_n, \hat{T}, by the iso edge $ij \in E(T) \mapsto$ edge $ij \in E(\hat{T})$

 so

 $\tau(K_n) \geq |T|.$

3. By Cayley’s theorem

 $\tau(K_n) = |T| = n^{n-2}.$
Rooted trees

Definition

Let T be a tree. We say it is **rooted** if it has a distinguished vertex v. We call v the **root**.

Note: We draw root at top, leaves at bottom.

Example
Breadth first search (BFS)

Given a rooted tree T with root v.

1. From v visit all vertices path length 1 away from v.
2. $i := i + 1$.
3. From v visit all vertices path length i away from v.
4. Repeat 2 and 3 until all vertices visited.

Note: For consistency → go left.

Example
Depth first search (DFS)

Given a rooted tree T with root v.

1. From v visit v' path length 1 away from v.
2. Visit v'' not already visited, path length 1 away from v'.
3. $v' := v''$.
4. Repeat 2 and 3 until can go no further. Back-track to last vertex choice v''' and $v' := v'''$.
5. Repeat 2, 3 and 4 until all vertices visited.

Note: For consistency \rightarrow go left.

Example
Definition

Let G be a graph. We say G is weighted if each $e \in E(G)$ has a weight $w(e)$. The sum of all weights is the weight of G $W(G)$.

Note: Normally positive integers.

Example

\[G = \]

\[A \text{ is distance from } B \text{ and } W(G) = \]
Definition

Let G be a weighted graph, and $u, v \in V(G)$. A path from u to v with smallest sum of edge weights is called a **shortest path** from u to v.

Example

The shortest path from A to D is
Dijkstra’s algorithm for shortest path

Let G be a connected weighted graph and $\ell(v)$ denote label of v. Compute shortest distance from vertices A to Z.

- Let $\ell(A) = 0$. Make it permanent. Assign temporary labels $\ell(A) + d$ to all adjacent to A distance d away. Make smallest temporary into permanent.

Note: Permanent labels cannot be changed.

Example
Dijkstra’s algorithm for shortest path

Let G be a connected weighted graph and $\ell(v)$ denote label of v. Compute shortest distance from vertices A to Z.

- If v just permanent. Assign temporary labels $\ell(v) + d$ to all adjacent to v distance d away if smaller label than present or no label. Make smallest temporary into permanent.
- Repeat until all vertices have labels that are permanent.

Note: Permanent labels cannot be changed.

Example
Dijkstra’s algorithm for shortest path

Let G be a connected weighted graph and $\ell(v)$ denote label of v. Compute shortest distance from vertices A to Z.

- The *shortest distance* from A to Z is label at Z. The *shortest path* found by starting at Z, include edge weight d between v, w if

$$\ell(w) - \ell(v) = d.$$

Example Shortest distance = Shortest path =
In summary

- Spanning trees of the complete graph
- Breadth first search
- Depth first search
- Weighted graphs
- Dijkstra’s algorithm for shortest path

Thanks! See you next time!