1. We will do a strong induction on the number of vertices \(n \).

Base case: \(n = 1 \). One vertex is clearly 4-colourable.

Induction step: Assume true for every graph with \(1 \leq n < m \) vertices, whose vertices have degree \(\leq 3 \). Take a graph with \(m \) vertices and delete a vertex and edges joined to it. By induction colour the remaining graph with 4 colours. Insert the vertex again, and since it is adjacent to no more than 3 vertices there is a colour free to colour it with, and the graph is 4-colourable.

2. Using deletion-contraction the chromatic polynomial for the graph on the left is \(k(k-1)(k-2)(k^2-3k+3) \) and on the right is \(k(k-1)^3(k-2) \).

3. We will do a strong induction on the number of copies of \(K_n, N \).

Base case: \(N = 1 \). Since all the vertices in \(K_n \) are adjacent we have \(k \) choices of colour for the first vertex, \(k-1 \) for the second, \ldots, \(k-(n-1) \) for the \(n \)-th vertex. Hence

\[
P_{Wd(n,1)}(k) = P_{K_n}(k) = k(k-1) \cdots (k-(n-1)) = k \prod_{i=1}^{n-1} (k-i)^1.
\]

Induction step: Now assume that the result is true for \(1 < N < m \) and consider \(Wd(n,m) \). Delete one copy of \(K_n \) from \(Wd(n,m) \) to form \(Wd(n,m-1) \). Then by induction \(P_{Wd(n,m-1)}(k) = k \prod_{i=1}^{n-1} (k-i)^{m-1} \). Inserting the one remaining copy of \(K_n \) we can colour the remaining vertices in \((k-1)(k-2) \cdots (k-(n-1)) \) colours and hence

\[
P_{Wd(n,m)}(k) = k \prod_{i=1}^{n-1} (k-i)^{m}.
\]

4. We will first prove the coefficient of \(k^n \) is 1 AND the coefficient of \(k^{n+r} \) for \(r > 0 \) is 0. This will be a strong induction on the number of edges \(E \).

Base case: \(E = 0 \). \(P_G(k) = k^n \) from the notes.

Induction step: Assume the result is true for up to and including \(m-1 \) edges. Then for a graph \(G \) with \(m \) edges, by deletion-contraction on some \(e \in E(G) \) we have

\[
P_G(k) = P_{G-e}(k) - P_{G/e}(k).
\]
By induction the coefficient of k^n is 1 in $P_{G-e}(k)$ and 0 in $P_{G/e}(k)$ and the coefficient of k^{n+r} for $r > 0$ is 0, and the result follows.

We now prove the coefficient of k^{n-1} is $-|E(G)|$ by strong induction on the number of edges E.

Base case: $E = 0$. $P_G(k) = k^n$ from the notes and the coefficient of k^{n-1} is $0 = -|E(G)|$.

Induction step: Assume the result is true for up to and including $m-1$ edges. Then for a graph G with m edges, by deletion-contraction on some edge $e \in E(G)$ we have

$$P_G(k) = P_{G-e}(k) - P_{G/e}(k).$$

By induction the coefficient of k^{n-1} in $P_{G-e}(k)$ is $-(m-1)$ and in $P_{G/e}(k)$ is 1 by the first part of this question. Hence the coefficient of k^{n-1} in $P_G(k)$ is $-(m-1)-1 = -m = -|E(G)|$ as desired.

5. We will do a weak induction on the number of components C.

Base case: $C = 1$. $P_G(k)$ is the chromatic polynomial of the one component.

Induction step: Assume the result is true for a graph with m components. Then for $m+1$ components, in components C_1, \ldots, C_m we know that since no vertex in them is connected to any vertex in C_{m+1}, then C_{m+1} can be coloured independently from the other components in $P_{C_{m+1}}(k)$ ways. Hence

$$P_G(k) = P_{C_1, \ldots, C_m}(k)P_{C_{m+1}}(k) = P_{C_1}(k) \cdots P_{C_m}(k)P_{C_{m+1}}(k)$$

by the induction hypothesis, and the result follows.

6. By Proposition 8 and the third question on this homework, we know that if $G = K_n$ then $\chi(G) = n$.

Conversely, if $G \neq K_n$ then it contains a vertex v such that $\deg(v) < n-1$. Consider $G' = G - v$. Since G' has $n-1$ vertices we can colour it with $n-1$ colours. Reinsert v into G' to recover G. Then since $\deg(v) < n-1$ there must be at least one of the $n-1$ colours, c, not used to colour a vertex adjacent to v. Colour v with colour c. Hence $\chi(G) \leq n-1$, so $\chi(G) \neq n$.