1. Using deletion-contraction the chromatic polynomial for the graph on the left is \(k(k - 1)(k - 2)(k^2 - 3k + 3) \) and on the right is \(k(k - 1)^3(k - 2) \).

2. Let \(P \) be the Petersen graph. The minimum number of colours required to colour any subgraph of a graph will be a lower bound for the chromatic number of the graph. Therefore any of the cycles of length 5 in \(P \), which requires at least 3 colours to colour it, gives that

\[3 \leq \chi(P). \]

On the other hand, since the degree of every vertex in \(P \) is 3 we have by Brook’s Theorem

\[\chi(P) \leq 3. \]

Hence \(\chi(P) = 3 \).

3. Since we have a tree, start at a degree 1 vertex \(v \) and colour it one of \(k \) colours. We can colour the one vertex adjacent to it one of \(k - 1 \) colours. Each uncoloured vertex adjacent to it can be coloured one of \(k - 1 \) colours and this can be repeated until we end at another vertex of degree 1, since there are no cycles and hence a unique path between \(v \) and the vertex presently being coloured. Since we have \(n \) vertices it follows the chromatic polynomial is \(k(k - 1)^{n-1} \).

4. Using deletion-contraction and the previous question on this homework, we get

\[P_{C_n}(k) = k(k - 1)^{n-1} - P_{C_{n-1}}(k). \]

We will do strong induction on the number of vertices \(n \).

Base case: \(n = 3 \). Since \(C_3 = K_3 \), we have \(k \) choices to colour the first vertex, then \(k - 1 \) for the second, then \(k - 2 \) for the third and

\[P_{C_3} = k(k - 1)(k - 2) = k^3 - 3k^2 + 2k = (k - 1)^3 + (-1)^3(k - 1). \]

Induction step: Assume the result is true for up to and including \(m - 1 \) vertices. Then by the first part of the question

\[P_{C_m}(k) = k(k - 1)^{m-1} - P_{C_{m-1}}(k) \]

\[= k(k - 1)^{m-1} - (k - 1)^{m-1} - (-1)^{m-1}(k - 1) \]

\[= (k - 1)^m + (-1)^m(k - 1). \]

5. We will first prove the coefficient of \(k^n \) is 1 AND the coefficient of \(k^{n+r} \) for \(r > 0 \) is 0. This will be a strong induction on the number of edges \(E \).

Base case: \(E = 0 \). \(P_G(k) = k^n \) from the notes.
Induction step: Assume the result is true for up to and including \(m - 1 \) edges. Then for a graph \(G \) with \(m \) edges, by deletion-contraction on some \(e \in E(G) \) we have

\[
P_G(k) = P_{G-e}(k) - P_{G/e}(k).
\]

By induction the coefficient of \(k^n \) is 1 in \(P_{G-e}(k) \) and 0 in \(P_{G/e}(k) \) and the coefficient of \(k^{n+r} \) for \(r > 0 \) is 0, and the result follows.

We now prove the coefficient of \(k^{n-1} \) is \(-|E(G)|\) by strong induction on the number of edges \(E \).

Base case: \(E = 0 \). \(P_G(k) = k^n \) from the notes and the coefficient of \(k^{n-1} \) is 0 = \(-|E(G)|\).

Induction step: Assume the result is true for up to and including \(m - 1 \) edges. Then for a graph \(G \) with \(m \) edges, by deletion-contraction on some edge \(e \in E(G) \) we have

\[
P_G(k) = P_{G-e}(k) - P_{G/e}(k).
\]

By induction the coefficient of \(k^{n-1} \) in \(P_{G-e}(k) \) is \(-(m-1)\) and in \(P_{G/e}(k) \) is 1 by the first part of this question. Hence the coefficient of \(k^{n-1} \) in \(P_G(k) \) is \(-(m-1)-1 = -m = -|E(G)|\) as desired.

6. This time we will do weak induction on the number of components \(C \).

Base case: \(C = 1 \). \(P_G(k) \) is the chromatic polynomial of the one component.

Induction step: Assume the result is true for a graph with \(m \) components. Then for \(m + 1 \) components, in components \(C_1, \ldots, C_m \) we know that since no vertex in them is connected to any vertex in \(C_{m+1} \), then \(C_{m+1} \) can be coloured independently from the other components in \(P_{C_{m+1}}(k) \) ways. Hence

\[
P_G(k) = P_{C_1,\ldots,C_m}(k)P_{C_{m+1}}(k) = P_{C_1}(k) \cdots P_{C_m}(k)P_{C_{m+1}}(k)
\]

by the induction hypothesis, and the result follows.