1. We will do an induction on the number of edges E.

Base case: $E = 0$. If there are no edges then the graph is bipartite as we can colour every vertex either black or white.

Induction step: Assume every graph with $0 < k < m$ edges with no closed paths of odd length is bipartite. Now consider a graph G with no closed paths of odd length and m edges, and delete one of its edges e whose end points are u and v. Note that no closed paths of odd length are created so by induction $G - e$ is bipartite.

If e disconnects a component of the graph into two, then by induction each component is bipartite, and we can colour the vertices such that u and v are different colours. If e does not disconnect a component, then since e completes a cycle of even length in G (by hypothesis) there must be a path of odd length in $G - e$ between u and v. Thus in the bipartite colouring of $G - e$ we have that u and v are different colours. Hence in both cases G is bipartite.

2. Euler’s Theorem gives $v - e + f = 2$ so $8 - \frac{3 \times 4}{2} + f = 2$ and $f = 10$.

3. Q_k is planar for $k \leq 3$ and Q_k is not planar for $k \geq 4$.

For $k = 1, 2, 3$ we can easily draw Q_k (do it) and see they are planar. For $k = 4$ note that since Q_k contains no triangles we have that if Q_4 was planar then it would satisfy $e \leq 2v - 4$. However since $e = 32, v = 16$ using our formula from Q18 this is not satisfied and hence Q_4 is not planar.

For $k > 4$ consider a subgraph of Q_k consisting of the set vertices whose last $k - 4$ digits are identical. Then this subgraph is isomorphic to Q_4 by the isomorphism $\phi : (a_1, a_2, a_3, a_4, \ldots) \mapsto (a_1, a_2, a_3, a_4)$, and so is not planar. Hence since a subgraph of Q_k is not planar, then Q_k is not planar.
4. Let the average degree of a vertex be denoted by $D = \frac{2e}{v}$. Then $e = \frac{Dv}{2}$. Substituting into $e \leq 3v - 6$ and rearranging we get

$$D \leq 6 - \frac{12}{v}.$$

Since $\frac{12}{v} > 0$ this implies that $D < 6$.

5. Since G is a connected, planar, simple graph with v vertices then if every face has k edges, by Euler’s Theorem we have

$$v - \frac{fk}{2} + f = 2$$

$$\Rightarrow 2v - fk + 2f = 4$$

$$\Rightarrow f(k - 2) = 2v - 4$$

$$\Rightarrow f = \frac{2v - 4}{k - 2}.$$

Substituting back into Euler’s Theorem we get

$$e = -2 + f + v = -2 + \frac{2v - 4}{k - 2} + v = \frac{k(v - 2)}{k - 2}.$$