1. For the lower bound remove C and get a minimal spanning tree below of weight 6. Hence a lower bound is $6 + 4 + 4 = 14$.

For the upper bound a minimal spanning tree is as below. Starting at D we get DAEFBCD and an upper bound is 16.

```
lower bound
A -- B
|   |
|   |
F -- E -- D
```

```
upper bound
A -- B
|   |
|   |
F -- E -- D -- C
```

2. The statement is false for every $n \geq 1$.

For $n = 1$ we do not have 2 vertices so the claim is false.

For $n \geq 2$ consider the following orientation on K_n, which is a simple digraph. Label the vertices of K_n by v_1, \ldots, v_n and direct an edge from v_i to v_j if $i < j$. Then the indegree of v_i is $i - 1$ and the out degree of v_i is $(n - 1) - (i - 1) = n - i$. So no two vertices have the same indegree or outdegree.

3. Take a directed path of maximum length $v_1 \cdots v_k$, which we know exists since there are no directed cycles. Then v_1 must be a source otherwise we could add an incoming arc to v_1 to make a longer directed path. Similarly, v_k must be a sink otherwise we could add an outgoing arc from v_k to make a longer directed path.

For the second part we will do a strong induction on the number of vertices.

Base case: The result holds with a digraph consisting of one vertex.

Induction step: Assume the result is true for all digraphs without directed cycles and up to $n - 1$ vertices. Let D be a digraph without directed cycles with n vertices. By the first part we know D contains a sink v. Delete v to form D' (that has no directed cycles as there were none in D) and by induction label the $n - 1$ vertices $1, \ldots, n - 1$ in D'. Reinsert v and label it n. By construction the vertices of D are ordered such that if an arc goes from vertex i to vertex j then $i < j$ for all $1 \leq i, j \leq n$, and the result follows by induction.
4. If \(n \) is even then the degree of every vertex is odd, and hence \(\text{indeg}(v) \neq \text{outdeg}(v) \) for any vertex \(v \). If \(n \) is odd, then the degree of every vertex is even. Let the vertices be \(v_1, \ldots, v_{2n-1} \). Then direct an edge between \(v_i \) and \(v_j \) where \(i > j \) from \(v_i \) to \(v_j \) if \((i - j) \) is odd and from \(v_j \) to \(v_i \) if \((i - j) \) is even. Then by construction \(\text{indeg}(v) = \text{outdeg}(v) \) for every vertex \(v \) in the graph.

5. Consider the partition with one vertex \(v \) in \(S \) and all the others in \(T \). Then there exists at least one arc from the vertex in \(S \) to a vertex in \(T \). Let \(V_1 \) be the set of all vertices in \(T \) at the end of such an arc. Now let \(S = \{ v \} \cup V_1 \), and all the others vertices be in \(T \), then there exists at least one arc from \(S \) to \(T \). Let \(V_2 \) be the set of all vertices in \(T \) at the end of such an arc. Now let \(S = \{ v \} \cup V_1 \cup V_2 \), and all the other vertices be in \(T \). Continuing in this way since our graph has a finite number of vertices we know this must terminate at some point.

If it terminates when \(S = V \) then we have by construction that there is a directed path from \(v \) to any other vertex and since \(v \) was chosen at random there is a directed path between any two vertices and by definition our graph is strongly connected.

If it terminates when \(S \neq V \) then there exists a partition of the vertices such that an arc does not go from any vertex in \(S \) to any vertex in \(T \) and so there is no directed path from \(v \) to any vertex in \(T \) and by definition our graph is not strongly connected.

6. Checking all cuts we find the minimum cut is 7, so a max flow is