MATH 300.202
Assignment 3
Due: Wednesday, January 25

I. Section 1.6: 17, 18, 20

II. Section 2.1: 4, 6, 10, 12

III. Section 2.2: 7(c, e, f), 12, 14

IV. Find each of the following limits or specify if the limit does not exist.

(a) \(\lim_{z \to i} z^3 + 3iz + 1 - 2i \)
(b) \(\lim_{z \to -i} \frac{z^4 - 1}{z + 1} \)
(c) \(\lim_{z \to 1+i} \frac{z^2 + z - 1 - 3i}{z^2 - 2z + 2} \)
(d) \(\lim_{z \to 0} \frac{z^2}{z \overline{z}} \)

V. Determine where the following functions are continuous.

(a) \(f(z) := \text{Arg}(z) \)
(b) \(f(z) := z + \overline{z} \)
(c) \(f(z) := \frac{1}{|z|^2 - 1} \)
(d) \(f(z) := \begin{cases} \frac{z^3 + 1}{z + 1} & \text{if } z \neq 1, \\ 1 & \text{otherwise.} \end{cases} \)

VI. Show that the geometric inversion mapping \(f(z) := 1/z \) (a.k.a., reflection in the unit circle) maps every line not passing through the origin onto a circle passing through the origin excluding the origin itself. (For simplicity, you may assume that the line does not intersect the unit circle.) [HINT: Consider the images of two points \(z_0 \) and \(z \) on the line \(\ell \), chosen such that the vector \(z_0 \) is perpendicular to the line \(\ell \) and \(z \) is distinct from \(z \). Look for similar triangles and determine the locus of \(f(z) \) as \(z \) varies over \(\ell \).]